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Abstract 

 
This research examines the relationship between weapon yield and dose rate 

contours.  Specifically, uncertainty in yield estimation from inversion of dose rate 

contours is studied.  The Hazard Prediction and Assessment Capability (HPAC) and a 

simple FORTRAN95 based Fallout Deposition Code (FDC) are used to recreate dose rate 

contours from atomic tests.  Recreated dose rate contours are compared to historical 

patterns found in the Defense Nuclear Agency’s (DNA) DNA 1251-1-EX Compilation of 

Local Fallout Data From Test Detonations 1945-1962 Extracted from DASA 1251 using 

both a visual comparison and a spatial Figure of Merit (FOM) developed from the 

Measure of Effectiveness (MOE) and the Normalized Absolute Difference (NAD) 

techniques.  The best-fit yield and yield estimates associated with 10%, 25%, and 50% 

error in FOM are determined.  Results are used to determine uncertainty in yield 

estimation from inversion of dose rate contour plots.  This research provides a method to 

estimate weapon yield to within a factor of 2 of the actual yield.  This research also 

determined that the use of wind speed data from ground zero in combination with wind 

speeds from high resolution mesoscale reanalysis weather data allows the most accurate 

recreation of historic dose rate contours.
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ESTIMATION OF WEAPON YIELD FROM INVERSION OF DOSE RATE 

CONTOURS 

I. Introduction 

 

 The purpose of this thesis is to determine the uncertainty associated with yield 

estimation from inversion of dose rate contours.  The Hazard Prediction and Assessment 

Capability (HPAC) program and a simple Fallout Deposition Code (FDC) model 

employing 4-dimensional high resolution mesoscale reanalysis weather data are used to 

recreate dose rate contours from six selected atomic tests.  HPAC and FDC contour plots 

for observed yields are compared visually and numerically against DNA-EX 1251-1-EX: 

Compilation of Local Fallout Data From Test Detonations 1945-1962 Extracted From 

DASA-1251 (DNA-EX) dose rate contours.  The FDC more effectively recreated historic 

DNA-EX dose rate contours and is used for subsequent analysis. The FDC is used to 

create dose rate contours for a range of yields bracketing the actual weapon yield.  Dose 

rate contours are inverted to estimate the best-fit weapon yield and yield estimates 

associated with 10%, 25%, and 50% allowable error in the FOM.  The uncertainty in 

yield estimation from inversion of dose rate contours is studied.  This thesis assumes 

readers have a basic understanding of nuclear weapon effects and meteorology. 
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Background 

Since the terrorist attacks of September 11, 2001, the United States has been 

actively engaged in the War on Terror both abroad and at home.  Our National Strategy 

for Combating Terrorism acknowledges “we are at war and that protecting and defending 

the Homeland, the American people, and their livelihoods remains our first and most 

solemn obligation” [1:1].  One critical step toward reaching this obligation, evident in our 

success in the War on Terror, has been our natural ability to analyze information and 

make decisions rapidly.  There is no doubt that if a domestic nuclear event (DNE) 

occurred, the President of the United States’ first order would likely be to save as many 

lives as possible.  His next order would be to find out who is responsible.  To answer 

such a question would require knowledge of the weapon itself. 

The scientific processes used to determine information about the weapon fall 

under the category of nuclear forensics.  In the post-9/11 scientific community, the 

science of nuclear forensics has been pushed to the forefront.  One of the major goals of 

this movement has been to develop ways of taking information readily available after a 

nuclear attack and using it to determine the composition and yield of the detonated 

weapon.   

Given the possibility of a DNE, the United States Government has many active 

programs involving nuclear forensics.  One of the key government agencies involved in 

the fight, the Defense Threat Reduction Agency (DTRA), has the mission of 

“safeguard[ing] America and its allies from Weapons of Mass Destruction by providing 

capabilities to reduce, eliminate, and counter the threat, and to mitigate its effects” [2].  

DTRA provides training, seminars, reach-back capability, and computer-modeling tools 
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to allow Federal agencies and State and local governments to practice and improve their 

consequence management capabilities. 

DTRA provides the HPAC suite of programs to serve as the primary “predictive 

software tool that allows the Warfighter and First Responder to generate decision-based 

information to facilitate enhanced situational awareness with the goal of protecting 

military and civilian populations from intentional or incidental Chemical, Biological, 

Radiological, and Nuclear (CBRN) threats” [3].  This suite of programs was designed to 

allow leaders to make more informed decisions in a timely manner.   

As HPAC is frequently the consequence management planning tool of choice for 

governmental and selected civil agencies, significant efforts have been made to use this 

software suite as a predictive tool.  Several researchers at AFIT have attempted to verify 

HPAC, and to improve its capabilities, in their research [4, 10, 11].  The most recent of 

these researchers, Jones, determined that HPAC fails to effectively reproduce nuclear test 

fallout patterns due to its neglect of lower-altitude wind effects on fallout [4]. 

Although HPAC has not effectively recreated historic dose rate contours to date, 

it still provides decision-makers with valuable information early in their decision cycle.  

For instance, HPAC provides a fair qualitative estimate of the size of an area that must be 

evacuated and insights into the number of displaced personnel.  Although it may not 

allow decision-makers to quickly determine where to focus their consequence 

management resources in a single high risk area, it certainly allows them to gain insights 

into the types and quantities of assets that may be required. 

DELFIC is an effective tool to model phenomena seen in weapons tests [5].  

Norment determined that the DELFIC Cloud Rise Module (CRM) produced cloud top 
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and cloud bottom heights that generally agree with historical test data [6:1].  He noted 

that the CRM over-predicted cloud bases for very low yield detonations. 

Since the development of a code like DELFIC was not reasonable within research 

time constraints, this research uses a modeling approach that capitalizes on DELFIC 

capabilities.  Specifically, since past researchers such as Jodoin and Hopkins have 

demonstrated its effectiveness in modeling cloud rise, I have opted to create an initial 

stabilized cloud using empirical fits based on DELFIC data and to use a simple modified 

wafer tossing program to transport and deposit fallout from this cloud.   

Motivation 

Several students in the Air Force Institute of Technology’s Nuclear Engineering 

program are currently considering various methods to determine weapon composition 

and/or yield.  Current topics of research include measurement of isotopic ratios, nuclear 

thermal pulse-induced chemical changes in common structures (such as car paint), and 

yield-dependent time and spatial dose relationships.  The end-goal of these endeavors is 

to develop a method to quickly estimate nuclear yield. 

In the late 1970s, DELFIC was validated as a fallout modeling code using visual 

comparison, comparison of hotline lengths and azimuths, and the Rowland-Thompson 

Figure of Merit (FM) to compare five tests with yields from 0.5KT to 3.38 MT [7:60-71].  

H+1 dose rate contours of 30 r/hr or higher were considered.  In the validation process, 

DELFIC performed best for the low yield shots.  The mean absolute percentage error for 

contour area was 61% for all contours, or 42% for all but the highest dose rate contour.  

For the lowest dose rate contour, the average dose rate contour area predicted was 75.7% 
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of that observed.  The range of predicted to observed areas was from 47.4% to 163%.  

The predicted hotline lengths were closer to the observed values, and had a mean 

absolute percent error of only 26%.  No statistics were computed for errors in azimuth 

direction of fallout but the low dose rate contours deviated by up to 53 degrees. 

Although DELFIC was validated against these detonations for high dose rates, it 

was not validated against lower dose rates that would be present at a significant distance 

from ground zero.  The areas used for comparison were only a small fraction of the 

DNA-EX dose rate contour areas.  For instance, the smallest validated dose rate contour 

(50 r/hr) area for Johnie Boy (0.5KT) was 1.271 km2.  In contrast, the total DNA-EX 

contour area for the smallest recorded dose rate of 0.01 r/hr was 2,614 km2

For a fallout code to be useful in a yield-prediction capacity, it must be accurate, 

have short run times, and provide a reasonable estimate of yield.  This research 

demonstrates that such a code can be developed.  This research focuses on development 

of a simple model to estimate dose rate contours representing fallout deposition after a 

nuclear event.  Since most experts propose a terrorist-built nuclear weapon upper-yield 

bound of approximately 15KT [8:2], this research will focus on yield estimation for 

events of less than 50KT.   Given the difficulties associated with building a medium to 

. 

No transport model in existence has reproduced historic nuclear test dose rate 

contours better than DELFIC.  However, even DELFIC has not reproduced dose rate 

contours comparable to those found in the DNA-EX, and has not been validated for 

fallout prediction for lower dose rates.  The inability of existing codes to reasonably 

match the DNA-EX contours calls into question the validity of using these codes to 

model fallout from a nuclear event. 
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large yield weapon, any weapon with a yield of more than 25-30KT would likely have 

originated from a knowing or unknowing State sponsor.  Such a determination would 

focus further nuclear forensics efforts to determine the weapon point of origin.  

Scope 

 The intent of this research is two-fold.  First, a FORTRAN program using simple 

approximations to first principles is developed to more accurately recreate the DNA-EX 

dose rate contours than those predicted by HPAC 4.04.11.  Second, the feasibility of yield 

estimation from dose rate contour inversion is analyzed.  The former objective aims to 

demonstrate that modest improvements to HPAC—such as effective integration of the 

DELFIC CRM—could greatly increase its capabilities as a modeling and/or predictive 

tool.  The latter validates the concept of using inversion of dose rate contours to diagnose 

weapon yield. 

Problem Statement 

The primary goal of this research is to determine the error associated with 

estimation of weapon yield from inversion of dose rate contour plots.  The enabling goal 

for this research is to produce fallout dose-rate contour maps that more accurately 

represent historical DNA-EX footprints than have been done to date. 



  

7  

II. Literature Review 
 
 This section provides background information critical to understanding both the 

historical importance and relevance of this research.  A summary of recent research 

supporting this thesis is provided.  A basic understanding of fallout and fallout 

deposition, a primer on fallout codes, and meteorological phenomena important to 

nuclear cloud transport and fallout deposition are addressed. 

Historical Context and Previous Research 

In the wake of 9/11, interest has piqued regarding the possibility of a domestic 

nuclear event and has resulted in a renewed emphasis on the need to accurately model 

fallout from nuclear explosions.  In recent decades, computing power and atmospheric 

modeling capabilities have increased dramatically.  As a result, complex models inclusive 

of more relevant physics have been developed to model atmospheric transport which 

could be used to model the transport and deposition of a radioactive cloud after a nuclear 

event.   

Unfortunately, no complete data set exists to allow for easy validation and 

verification of modern modeling tools in a nuclear fallout modeling capacity.  The type 

and amount of data gathered from tests varies.  First, information on how, when, and 

where data used to construct DNA-EX dose rate contours was collected is limited.  All of 

the US Government’s 1,054 nuclear tests took place between 1945 and 1992 [9:vii-xi].  

After July 1962, most nuclear tests within the US were underground, with the majority 

taking place at the Nevada Test Site.  Some detonations from Operation PLOWSHARE, 
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which explored peaceful applications of nuclear explosions, were shallow-buried crater 

producing bursts.  Second, the atmospheric data available for historic test dates is low 

resolution, consisting of soundings that may be taken hundreds of kilometers apart.  

Modern atmospheric soundings are generally taken more frequently and the total number 

of measurements available is much greater. 

 Previous researchers Chancellor [10], Pace [11], and Jones [4] used HPAC to 

study the same nuclear tests that are considered in this thesis.  Chancellor digitized DNA-

EX contours and did initial modeling with HPAC.  Pace concluded that introduction of 

terrain resolution in a model that is greater than weather resolution introduces significant 

errors [11:82-83].  Jones identified that HPAC fails to properly integrate the DELFIC 

CRM into HPAC and therefore fails to consider the initial impact of surface and low 

altitudes winds [12:90].  The work of these researchers, as well as other work conducted 

at AFIT since the 1980s, provides the foundation on which this research is based. 

Production of Radioactive Material 

A nuclear detonation can create a significant amount of radioactive material.  The 

deposition of this radioactive material, known as fallout, depends on the design and type 

of weapon, detonation location, and weather.  These and other factors can significantly 

affect the amount of radioactive material produced.  Fission weapons create 

approximately 55 grams of fission products per kiloton of weapon yield [13:401-402].  

Fusion reactions do not directly create fission products.  Both fission and fusion weapons 

create about 1023 neutrons that escape the device per kiloton of yield which can activate 

material resulting in increased radioactivity. 
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Cloud Rise 

Since the fireball containing the radioactive material is much hotter than the 

surrounding atmosphere, it will rise until it reaches temperature equilibrium with the 

environment.  During cloud rise, the fireball experiences drag from the surrounding air 

through which it is rising [14:28-29].  Irradiation and interaction with the air cools the 

outer portion of the fireball and the displacement of the fireball upward pulls cool air into 

the center of the fireball.  This results in toroidal motion as seen in Figure 1 [14:29].  The 

amount of debris pulled up into the rising fireball largely depends on the weapon yield 

and proximity of detonation to the ground. 

 

Figure 1.  Toroidal Circulation Within A Radioactive Cloud From A Nuclear Explosion [14:29]  
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Jodoin combined vortex motion with DELFIC cloud rise to demonstrate effects 

on dose rate contour plots [5:113-114].  He determined that vortex behavior of the cloud 

allowed larger particles to remain aloft longer, and limited the amount of fallout 

deposition that occurred prior to cloud stabilization.  Using this modification, he 

produced dose rate contours that were comparable to the DELFIC produced control, 

covering similar lateral area but having smoother, more realistic deposition of fallout.  He 

also predicted stabilized cloud heights that more closely matched historic values. 

Cloud Stabilization Height 

 As stated above, the cloud will continue to rise until a temperature equilibrium 

condition is reached between the cloud and the surrounding environment.  Within the 

cloud, different size particles will rise to different altitudes.  Upon stabilization, the 

particles in a group can be modeled as a normal distribution in the vertical centered at a 

group stabilization height, g
cZ .  Hopkins used DELFIC calculations for 30 tests of yields 

ranging from 1KT to 10MT to empirically determine particle stabilization heights, g
cZ , as 

a function of particle radius (rg

 

) and yield (Y) as described in (1) [15:129]. 

1 2

2 3 4
1

2 3 4
2

ln( ) 7.889 0.34[ln( )] 0.001226[ln( )] 0.004227[ln( )] 0.000417[ln( )]

ln( ) 1.574 0.01197[ln( )] 0.03636[ln( )] 0.0041[ln( )] 0.0001965[ln( )]

g
c gZ C C r

C Y Y Y Y

C Y Y Y Y

= −

= + + − +

= − + − +

 (1) 

Figure 2 shows the particle group center stabilization heights for 15, 28, and 

44KT yields using (1).  Note that particle sizes larger than those shown for their 

respective yields have a particle group center stabilization height below ground level.  



  

11  

For these particle size groups, the fraction of the group’s activity that is predicted below 

ground level is deposited at ground level. 

 

 

Figure 2.  Group Center Stabilization Height Versus Particle Size for 15, 28, and 44KT Yields 

 

Conners determined a yield-dependent fit for the vertical standard deviation of 

particle group height using a similar method [16:81-83].  He found numerical fits for the 

upper and lower elevations using DELFIC data, with ST and IT and SB and IB

Figure 3

 as the 

slope and intercept for equations describing the altitude of the top and bottom of the 

particle group within the visible cloud.  From this, he determined a linear relationship 

describing the top and bottom of the particle group described by (2) and seen in . 
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2 3 4

2 3 4

(1.61324 0.0682128ln( ) 0.0943986ln( ) 0.0123826ln( ) 0.000634405ln( ) )

(8.10667 0.302301ln( ) 0.0191831ln( ) 0.00748407ln( ) 0.000518155ln( ) )

(1.77691 0.032544ln( ) 0.0

2 ( )g

Y Y Y Y
T

Y Y Y Y
T

Y
B

z I r S

S e

I e

S e

− + − +

+ + − +

− +

= + ⋅ ⋅

= −

=

= −
2 3 4

2 3 4

679667ln( ) 0.0114241ln( ) 0.000590821ln( ) )

(7.68304 0.372472ln( ) 0.0107429ln( ) 0.0039146ln( ) 0.000358551ln( ) )

Y Y Y

Y Y Y Y
BI e

− +

+ − − +=

 (2) 

 

 

Figure 3.  Conners' Particle Group Top and Bottom Versus Particle Size for 28kT Yield 

 

From (2), the vertical thickness of a particle group, gz∆ , can be determined by (3) 

and the particle size group stabilization height is described by (4). 

 ( 2 ( ) ) ( 2 ( ) )g T g T B g Bz I r S I r S∆ = + ⋅ ⋅ − + ⋅ ⋅  (3) 
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Figure 4 shows plot of Hopkins’ (1) and Conners’ (4) empirical fits for the particle size 

groups used in this study for a yield of 28KT.  Note that Conners’ equation provides 

lower particle group stabilization heights.  Since Jodoin determined that vortex motion 

during cloud rise allowed larger particles to remain aloft longer, this model uses Hopkins’ 

numerical fit to determine the initial stabilized cloud’s particle group stabilization 

heights. 

 

 

Figure 4.  Comparison of Hopkins' and Conners' Particle Group Stabilization Height Numerical Fits 
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volumetric activity density of the stabilized cloud at stabilization time as (5), where xσ , 

yσ ,  and zσ are the standard deviations in the three dimensions. 

 

22 211 1
22 21 1 1( , , , ) ( )

2 2 2

c

yx z

y z zx

s s
x y z

A x y z t A t e e eσσ σ

πσ πσ πσ

    −−  − −         

    
   =    
      

 (5) 

 Pugh used a numerical fit to describe the standard deviation of the particle 

distribution of the cloud in the x and y directions as a function of yield, Y, in (6) [17:24]. 

 

1 3.250.70 ln 23 1000
4.0 ln 5.4

10001.609x y o

Y

Y

eσ σ σ

 
 
                 

+ −

+ +

= ≡ =  (6) 

Pugh’s assumption indicates the positive relationship between yield and horizontal spread 

of particles.  Although Jodoin demonstrated that at the time of stabilization the activity of 

the cloud is distributed toroidally [5:91-93], Bridgman reports that analysis of grounded 

fallout patterns allow modeling of the horizontal distribution of activity as Gaussian 

[13:407]. 

The vertical spread of each particle group within the stabilized cloud depends on 

the particle size and yield.  Conners developed an empirical fit from DELFIC data, (7), 

describing the distance from top to bottom for a particle group within the initialized 

visible radioactive cloud, where gr is the particle group radius, ds is the slope of the line,  

dI  is the line intercept, and cz∆ is the vertical thickness from top to bottom of the particle 

group [16:83]. 



  

15  

2 3 4

2 3 4

(1.78999 0.048249(ln( )) 0.0230248(ln( )) 0.00225965(ln( )) 0.000161519(ln( )) )

(7.03518 0.158914(ln( )) 0.0837539(ln( )) 0.0155464(ln( )) 0.000862103(ln( )) )

7

2

Y Y Y Y
d

Y Y Y Y
d

c d g d

s e

I e
z I r s

− + − +

+ + − +

= −

=
∆ = + ⋅

 (7) 

Figure 5 shows the particle group vertical thickness versus particle size for a yield of 

28KT. 

 

 

Figure 5.  Vertical Thickness of Particle Group Versus Particle Size 
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particle size group.  It is important to note that the distribution of activity in a radioactive 

cloud is not confined to within the visible cloud.  This research assumes that the vertical 

distribution of activity within any particle size group is Gaussian and that 68% of the 

group’s activity will be located within one standard deviation of the particle group center.  

Conner’s cz∆ is equal to two standard deviations (one above and one below the particle 

group center) and the standard deviation of a particle group in the z-direction is defined 

as 
2

c
z

zσ ∆
= .  Therefore, the equation for the cloud top stabilization height, g

ctZ , for a 

particle size group is (8). 

 3g g
ct c zZ Z σ= +  (8) 

Figure 6 shows the top, bottom, and center of the stabilized particle groups for a 28KT 

yield. 

 

 

Figure 6.  Top, Center, and Bottom Stabilization Heights Versus Particle Size Group 
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Debris Entrainment and Fallout Particle Size 

The altitude at which a weapon is detonated significantly affects the extent of 

debris entrainment of the fireball and subsequent formation of fallout particles.  In the 

event of an air burst, defined as a burst of sufficient height that no significant quantities 

of surface materials are pulled up into the fireball, the bulk of particles formed will be 

between 0.01 and 20 microns [14:409].   For ground or surface contact bursts, a 

significant amount of soil or other debris may be lifted into the air in a solid or vaporized 

form.  The amount of soil lifted is yield dependent, with approximately 0.3 tons of dirt 

lifted per ton of yield [13:401-402].  The increased debris entrainment creates larger 

fallout particles, typically with diameters from a fraction of a micron to several 

millimeters [14:409]. 

Fallout Particle Formation 

As the cloud rises and cools, the entrained material will begin to condense and 

will serve as a carrier for radioactive material.  Bridgman describes the nuclear fireball 

particle dynamics as a process of refractory and subsequent volatile condensation with 

continued particle growth through agglomeration until cloud stabilization is reached as 

seen in Figure 7 [13:402-403].  He notes that the difference in condensation temperatures 

for refractories and volatiles leads to their volumetric and surface distributions, 

respectively, on fallout particles. 
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Figure 7.  Nuclear Fireball Particle Dynamics [13:403] 

 
 The actual shape and size of fallout particles varies with the conditions under 

which they are formed.  Those particles which form from condensation are largely 

spherical and have radioactivity uniformly distributed throughout the particle [14:409-

418].  Particles that form from carrier material that was only partially vaporized or pulled 

up later through the updraft into the fireball are irregularly shaped with radioactive 

material concentrated on the surface.  As the particles continue to fall, they may continue 

growth through agglomeration. 

Fallout Particle Size Distributions 

Numerous studies have been conducted to determine the fallout particle size 

distributions associated with atomic tests.  No distribution describes the particle size 
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distribution for all atmospheric, surface contact, surface, shallow-buried, or deeply-buried 

bursts.  The distribution of particle sizes varies due to the rate of temperature change in 

the cloud, debris loading, and condensation temperatures of entrained materiel.   

In a study of local fallout, which included data from 16 Nevada test site events, 

Baker determined that the vast majority of local fallout samples (deposited within 24 

hours) and early-time particles suspended in cloud samples (within several hours) 

demonstrated very different particle size distributions [18:16].  He noted that particles of 

10 mµ  and larger located at the tropopause (approximately 12 km) would deposit within 

days while particles of the 1 mµ  range would take months to deposit from the same 

altitude.   

Baker determined that a bimodal size particle size distribution best explained the 

“puzzling dichotomy between early and late time debris sedimentation” and could be 

used to explain cloud debris behavior for surface and air bursts [18:120-128].  He broke 

his distribution into large and small particles described as (9), where r is particle radius, 

( )N r  is the total population of fallout particles,  is the population of smaller-size 

particles which explains late time fallout behavior, and  is the population of larger-

size particles that explain early time fallout behavior. 

 1 2( ) ( ) ( )N r N r N r= +  (9) 

Baker tested his distribution by applying it to 97 surface and air-burst events.  He 

applied log-normal, log-normal plus exponential distributions, and hybrid log-normal and 

power law fits to fallout.  He determined that a log-normal distribution, as defined by 

(10), best explained early and delayed fallout, where r is particle radius, 1rm is the median 
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radius for the small particle group, 2rm is the median radius for the larger particle group, 

1β is the logarithmic standard deviation of the small particle group, and 2β is the 

logarithmic standard deviation of the larger particle group. 

 

2 2

1 1
2 2

1 2

1 2

ln( ) ln( ) ln( ) ln( )1 2
1 2( )

2 2

r r r rm m
N NN r e e

β β

π β π β

− −
   − −
      
   = +  (10) 

When Baker applied his bimodal distribution, he determined a median particle 

radius, 1rm , of 0.1 microns and a logarithmic slope, 1β , of 2 effectively described  for 

all studied events [18:123].  His attempt to determine similar parameters for  did not 

yield satisfactory results.  Using an 2rm  of 0.2 microns, his results for the 2β  log of 

slope varied from 3.4 to 6.0 for the sixteen Nevada tests.  He determined the variance of 

his results was related to burst height.  His results are supported by Davis’ conclusions 

that the logarithmic slope varies about a mean of 4 [19]. 

Izrael notes that subsurface or buried bursts will have different fallout particle size 

distributions but the fallout pattern for a buried crater-producing detonation is similar to 

that of a surface burst [20:129].  However, for a crater producing burst, the radioactive 

cloud is split into a base surge cloud and main radioactive cloud, with each containing a 

fraction of the overall activity.  The type, amount, and distribution of radioactive products 

among the two parts of the cloud depend on the materiel and type of particles forming the 

fallout [20:136-140].  Izrael states that much of the fallout close to ground zero will not 

exhibit evidence of fractionation, whereas the surge cloud will have a concentration of 

radionuclide with gaseous precursors. 
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Local and Delayed Fallout 

Fallout is generally divided into two categories, early and delayed fallout.  Early 

fallout, also known as local fallout, is defined as the fraction of fallout that occurs within 

24 hours.  The breakdown of total activity between local and delayed fallout varies and 

may be significantly affected by environmental and atmospheric conditions.  In general, 

local fallout comes from the  fraction of Baker’s bi-modal distribution, which contains 

particles of 20 microns or larger.   

The local fallout from land surface bursts generally contains 40-70% of the total 

activity [14:414].  The local fallout from shallow underground bursts may be slightly 

higher, and the particle size distribution of the radioactive cloud can change rapidly in the 

first few minutes after detonation [20:123-124].  Izrael notes that seconds after detonation 

of a 1.1KT crater-producing detonation buried at 48 meters, “the fraction of particles of 

diameter smaller than 0.5 mµ  did not exceed 1%, with 80% of the total radioactivity on 

particles larger than 10 mµ ”; however, after 18 minutes 90% of the cloud activity was 

held on particles of 0.5 mµ  or smaller.  Thus, significantly more than 40-70% of the total 

activity was deposited locally.  Izrael also noted that for more deeply buried shots in 

which no breaking of the surface occurs and no venting takes place, the majority of 

radioactive products remain buried in the terrestrial rock around the cavity created by the 

explosion [20:63-64].  For these types of bursts, only a small part of the radioactive 

isotopes of inert gases and the most volatile elements escape into the atmosphere. 
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Particle Fall Dynamics 

Although fallout particles are not perfectly spherical, most research treats particle 

fall as the movement of spheres through a liquid.  Bridgman uses a modification of 

Davies [21:259-270] and McDonald’s [22:463-465] work to develop empirical functions 

that allow calculation of the Reynolds number (Ry) and thus the particle velocity (v) for a 

sphere falling through air.  He defines the term Q as the product of the square of Ry

aρ

 and 

the coefficient of drag as in (11), where is air density, g is gravity, r is particle radius,  

η is dynamic viscosity, and pρ is particle density. 

 
3

2
2

32
3
a p

y d
gr

Q R C
ρ ρ
η

= =  (11) 

Bridgman’s equation (12) describes particles with a Q < 140 and a particle size of greater 

than 1 micron and (13) describes particles with 100 < Q < 4.5x107

 

, allowing explicit 

solution for the Reynolds number. 

4 2 6 3 9 42.3363 10 2.0154 10 6.9105 10
24y

Q
R x Q x Q x Q− − −= − + −  (12) 

 [ ] [ ] [ ]2 3

10 10 10 10log ( ) 1.29536 0.986 log ( ) 0.046677 log ( ) 0.0011235 log ( )yR Q Q Q= − + − +  (13) 

Davies determined the particle terminal velocity for a sphere falling in a viscous media is 

related to the Reynolds number by (14). 

 
2

y

a

R
v

r
η
ρ

=  (14) 

Thus, for non-Stokesian particles, roughly those with a particle radius of larger than 10 

microns, Bridgman’s equations can be used to determine the Reynolds number and 

equation (14)  can be used to determine particle fall speed.  Of note in this analysis is that 
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particles that do not meet Bridgman’s minimum requirements must be treated as 

Stokesian.  

Particle Transport 

As cloud debris and radioactive particles fall through the atmosphere, they are 

affected by horizontal winds as well as up- and down-drafts.  Given the same wind 

conditions for all particles, larger particles will reach a faster terminal velocity than 

smaller particles.  In a United States Standard Atmosphere, with generic atmosphere 

conditions, particles will fall faster at higher altitudes than at lower altitudes simply due 

to atmospheric density differences. 

In theory, a single particle falling through the atmosphere could be traced from its 

point of stabilization (its locus following the dynamic rise due to the explosion—its start 

point), through a varying wind field, and to deposition.  However, single particle tracking 

is not done in fallout deposition models because it is too computationally intensive and 

time consuming.  In practice, transport models are used to track the movement of a 

distribution of suspended particles through the atmosphere.  The two prevalent models 

that have been used to transport and deposit fallout can be categorized as disk tosser and 

smear codes.  A transport and deposition model that is very similar to the disk tosser is a 

wafer tosser.  The most significant difference between the two is that disks are modeled 

with a vertical thickness whereas wafers are not. 

The DELFIC model is a disk tosser that transports discrete disks of individual 

particle size groups from rise to ultimate deposition.  Hopkins determined the major 

advantage of the DELFIC model is that it can be used to transport the radioactive cloud 
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through actual winds [23:5].  The major disadvantages include incompatibility with 

modern atmospheric modeling programs and computational cost.  It should be noted that 

the computational efficiency of modern computers has increased dramatically since the 

time of Hopkins’ research and computational cost may no longer be as significant an 

issue.   

Contrastingly, Smear codes take a vertical distribution of activity and “smear” it 

on the ground.  The major advantage and disadvantage of Smear codes, respectively, are 

ease of use and an inability to include 4-dimensional wind fields.  Hopkins developed a 

hybrid method that allowed use of a smear code with time-varying winds [23].  He was 

able to produce realistically curved “hotlines” with real winds allowing computation of 

dose rates near the “hotline.”  He also determined that transport of disks through varying 

winds provides no improvement over a smear code.  Hopkins’ later research involved the 

development of a transport model using variable spectral winds that effectively modeled 

ash deposition from the Mount St. Helen’s eruption [15]. 

Concentration Dilution During Transport 

As a plume of material is transported through the atmosphere, it undergoes some 

form of dilution.  The simplest means of accounting for dispersion is to use a Gaussian 

dispersion model.  This type of model assumes that random dispersive processes produce 

a “normal distribution” with a predictable standard deviation.  Bridgman made this 

assumption when he developed (15) to describe the volumetric activity density at any 

time and location in a radioactive cloud when using a smear code. 
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The standard deviations in the x and y directions, xσ and yσ , are calculated from (6).  

Jodoin [5] determined toroidal motion of the cloud continues after stabilization and Pugh 

[17:31] determined an empirical relationship (16) linking yield and diffusive growth, 

where o
cz  is the stabilized cloud center height at the time of stabilization (defined here as 

t = 0) and cT  is an empirical growth constant. 
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The toroidal-induced diffusive growth is described by (17), where oσ  is the stabilized 

cloud deviation.  Note that the diffusive growth becomes constant after three hours. 
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The effective horizontal growth of the cloud during transport is related to the deviations 

of the rise and diffusive growth by (18).  

 2 2 2
,effective x y diffσ σ σ= +  (18) 

Time Rate of Change of Activity 

In 1948, Kathrine Way [24] and E. P. Wigner developed a theoretical treatment of 

radioactive decay and determined a simple approximation to describe the time 
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dependence of dose rate to the one hour dose rate as described by (19) [14:392] and as 

seen in Figure 8. 

 1.2( ) (1)Gd GdD t D t
• •

−=  (19) 

 

 

Figure 8.  Way-Wigner Decay Versus A Calculation of Individual Fission Products [14:393] 

 
Figure 8 shows that (19) does not perfectly match the decay of individual fission products 

but that it is behaviorally correct and provides approximate values.  The Way-Wigner 
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decay law was used to adjust dose rates throughout this research.  Equation (19) is used 

to convert HPAC 48-hour dose rate contours to H+1 hr dose rate contours.  Although the 

FDC program created by the author performs all calculations using H+1 hr dose rates it 

can be adjusted using (19) to calculate dose rates at other times. 

DNA-EX 

The DNA-EX “serve[s] as an unclassified source of information and data 

concerning the atmospheric nuclear test program conducted by the United States prior to 

1963” [25].  Table 1 lists descriptive information taken from the DNA-EX for each of the 

tests considered in this research.  Dose rate contour plots used throughout this thesis have 

also been taken from the DNA-EX.  Note that the DNA-EX latitude and longitude for 

Priscilla are incorrect [11:9] and the corrected values are listed Table 1. 

 
Table 1.  DNA-EX Tests Studied 

 
OPERATION: 
Test 

Date and Time 
(Zulu) 

Location (DD.MM.SS) 
LAT     LON 

Yield 
[KT] 

HOB [ft] 
Cloud Top [ft] 

Tumbler Snapper: 
George 

01JUN1952 
1155 37.02.53 116.01.16 15 300 

37000 
Teapot: 
ESS 

23MAR1955 
2030 37.10.06 116.02.38 1 -67 

12000 
Teapot: 
Zucchini 

15MAY1955 
1200 37.05.41 116.01.26 28 500 

40000 
Plumbbob: 
Priscilla 

24JUN1957 
1330 36.47.53 115.55.44 37 700 

43000 
Plumbbob: 
Smoky 

31AUG1957 
1230 37.11.14 116.04.04 44 700 

38000 
SUNBEAM: 
Johnie Boy 

11JUL1962 
1645 37.07.21 116.19.59 0.5 -1.9 

5153 
 

It is important to note that there is little uniformity in data collection methods and 

techniques among tests [25:2-3].  In the case of larger yield weapons, data could not be 
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collected until hours, and sometimes days, after detonation.  The dose rate contour plots 

were constructed from measurements taken at different times and locations.  Dose rates 

were adjusted to H+1 hour quantities using the Way-Wigner approximation. 

The DNA-EX includes wind data from the surface to, at a minimum, the 

tropopause height for each test.  Data were recorded as close to detonation time as 

possible.  Wind data is also available for select tests after detonation.   

Table 2 indicates available ground-zero wind data. 

 
Table 2.  Ground Zero Wind Data Availability 

 
OPERATION: 
Test Available Winds 

Tumbler Snapper: 
George H-hr 

Teapot: 
ESS H-hr 

Teapot: 
Zucchini H-hr 

Plumbbob: 
Priscilla 

H+1hr 
H+4hr 

Plumbbob: 
Smoky 

H-hr 
H+3hr 

SUNBEAM: 
Johnie Boy 

H-hr 
H+1hr 
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Reanalysis Weather Data 

Reanalysis weather data is created by taking known weather observations and 

using a weather modeling program to create a spatially and temporally refined weather 

grid.  Hultquist provides an excellent example of the use of weather reanalysis data to 

analyze past events [26].  He demonstrated that weather reanalysis data could be used to 

recreate the conditions that likely led to the sinking of the Edmund Fitzgerald. 

In a previous effort to recreate dose-rate contour plots, Pace used reanalysis 

weather data created using the National Weather Service’s National Centers for 

Environmental Prediction (NCEP) T62/28 global spectral model [11:13-14].  He created 

reanalysis weather data for a hemisphere (180 degrees of latitude and 360 degrees of 

longitude) at six hour intervals into a grid of 73 x 144 points.  This equates to a spatial 

resolution of approximately 273km x 213km.  The vertical range of his reanalysis 

weather included 17 pressure levels up to 60 km in the atmosphere. 

Jones used Pace’s reanalysis weather data to create the high resolution mesoscale 

reanalysis weather data of interest to this thesis [12].  He used Pace’s reanalysis weather 

data and processed it through the Colorado State University Regional Atmospheric 

Modeling System (RAMS) software to create a 4-dimensional high resolution weather 

forecast.  Jones’ weather grid provides high resolution mesoscale reanalysis weather data 

at 1-hour intervals and 11 pressure levels for over 60 hours for a spatial domain of 74 x 

60 points covering 4.6 degrees latitude and 7.1 degrees longitude.  This equates to a 

spatial resolution of approximately 7km x 10km.    Table 3 shows the southwest and 

northeast corners of the available weather data for each test.  Note that the grid points are 

flat-earth distances from ground zero.  The origin of the grid is located at ground zero for 
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each test.  It is important to note that Jones’ reanalysis weather data did not cover the 

entire area for all of the DNA-EX dose rate contours. 

 

Table 3.  High Resolution Mesoscale Reanalysis Weather Grids 
 

OPERATION: 
Test 

Southwest 
Grid 

[km, km] 

Northeast 
Grid 

[km, km] 

Limiting 
Factor 

Tumbler Snapper: 
George (-285,-298) (347,217) Weather 

(217 km N) 
Teapot: 
ESS (-283,-311) (349,203) DNA-EX 

(200 km E) 
Teapot: 
Zucchini (-285,-303) (348,212) DNA-EX 

(275 km E) 
Plumbbob: 
Priscilla (-202,-382) (426,133) DNA-EX 

(360 km E) 
Plumbbob: 
Smoky (-281,-314) (351,201) Weather 

(350 km E) 
SUNBEAM: 
Johnie Boy (-256,-306) (374,209) DNA-EX 

(115 km N) 
 

 

In the case of detonations George and Smoky, Jones’ high resolution reanalysis weather 

cut off before the DNA-EX dose rate contours ended.  In all other cases, the DNA-EX 

dose rate contours ended or were cut-off within the reanalysis weather grid.   Figure 9 

shows the spatial relationship between the DNA-EX dose rate contours and Jones’ 

reanalysis weather data grid. 
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Figure 9.  DNA-EX Dose Rate Contour for George And  High Resolution Mesocale Reanalysis 
Weather Grid 
 

Comparison of Observations and Predictions 

The effectiveness of a transport and dispersion model to predict dose rate contours 

is measured by how well it can predict both the physical extent of contamination and how 

it is distributed.  The Measure of Effectiveness (MOE) and Normalized Absolute 

Difference (NAD) techniques discussed subsequently allow such a comparison.  Warner 

et al. provide more detailed explanations of these techniques, as well as application 

examples [27]. 
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Measure of Effectiveness 

The MOE provides a way of comparing the physical extent of contamination 

predicted in a model to that of historical data.  The MOE may be used to compare 

modeled dose rate contour plots to those of the DNA-EX.  The basic premise is to 

compare predictions against observations and to correct for errors in prediction [27].  The 

area where the model correctly predicts observed fallout is known as the area of overlap, 

AOV.  Errors in prediction fall into two categories: false positive or false negative.  The 

area of false positive, AFP, is that area for which the model predicts fallout deposition 

where none was observed.  The area of false negative, AFN

Figure 10

, is the area where the model 

fails to predict fallout where it was actually observed.   demonstrates a 

graphical depiction of these areas [27:59]. 

 

Figure 10.  Areal Components for MOE Comparison [27:59] 

 
The MOE may be expressed mathematically as (20), where APR is the area of the 

prediction and AOB is the observed area [27:59].   
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The effects of AFN and AFP Figure 11 on the MOE(x,y) are displayed graphically in .  In 

this case, the line y = x represents the case where the size of the fallout area predicted 

equals that of the actual area observed.  Movement along the line y = x from the point of 

no overlap (0,0) to that of perfect overlap (1,1) indicates an increase in the overlap 

between the predicted areas.   

 

Figure 11.  Key Characteristics of 2-D MOE Space [27:60] 

 
Deviation from the line y = x indicates a change to AFN or AFP as depicted.  Any 

MOE(x,1) indicates that the AOV is completely accounted for by the APR.  The size of the 

x-value, from 0 to 1, inversely corresponds to the AFN.  Likewise, any MOE(1,y) 

indicates that the APR completely encapsulates the AOV and the y-value is inversely 
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related to the AFP.  

 

From the established relationships of the MOE components, the x and 

y location on the graph is defined by (21) [27:59-62]. 
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Normalized Absolute Difference 

The NAD provides a way of comparing model predictions to observed values.  

Mathematically, the NAD (22) calculates the normalized scatter between observed and 

predicted concentrations.  It may be expressed in terms of the AFP, AFN, and AOV

 

 regions.  

NAD values range from 0 to 1, with a lower value indicating a closer match between 

observed and predicted values. 

2
FN FP
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A ANAD
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+
=

+ +
 (22) 

Substituting (21) into (22) yields (23), mathematically relating the NAD and the MOE 

[27:65]. 

 
2x y xyNAD

x y
+ −

=
+

 (23) 

Figure 12 shows the relationship between NAD isolines and the MOE plotted against the 

same axes as Figure 11.  Generally, as the NAD gets smaller, the MOE demonstrates 

better spatial correlation between predictions and observations.  From Figure 12 it is 

apparent that, when interpreted together, the MOE and NAD can provide quantitative 

information which provides insight as to how the model differs from observation.  In 
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general, a high NAD indicates a good match.  However, from the MOE, one may be able 

to determine where the model is failing, e.g. overestimation of AFN or AFP

 

. 

Figure 12.  NAD Isolines in 2D MOE Space [27:65] 

 

Figure of Merit 

The Figure of Merit (FOM) used in this thesis capitalizes on the MOEs’ ability to 

describe spatial deposition differences and the NAD’s ability to describe concentration 

differences between model predicted and historic dose rate contours.  The MOEx, MOEy, 

and NAD may be combined as (24).  
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The range of FOM values includes all non-negative numbers.  For a perfect prediction 

FOM equals zero.  A FOM increase indicates a decrease in model prediction accuracy. 

 If an observed dose rate contour is known for a specified area of interest (AOI), 

one can deduce how the FOM will behave over a range of yields.  In this research, the 

area of interest was limited to (unless further limited by the DNA-EX or reanalysis 

weather data grids) the area enclosed by a 200 x 200 mile square centered at ground zero.  

The area of observation, AOB, is fixed, and the only variables that can change are AFN, 

AFP, and AOV.  The potential AOV is limited by the AOB. 

 The expected numerical behavior of the FOM can be deduced by considering 

MOEx, MOEy, and NAD values for a range of yields.  For a yield much smaller than the 

actual yield, the observed dose rate contour will dwarf the predicted dose rate contour.  

The MOEx value will be a very small number because the AFN is very small compared to 

the AOB.  The MOEy value will be close to one because the APR is mostly contained 

within the AOB, limiting the AFP.  The NAD should approach one because the AOV for 

the two dose rate contours is very small compared to the AFN

For a yield much larger than the actual yield, the predicted dose rate contour 

contains the observed dose rate contour.  The A

.  Thus, for very small yield 

values, the FOM will be larger than one.   

OV has reached a value that is equal to the 

AOB.  The AFN is zero so the MOEx is forced to one.  The MOEy will approach constant 
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value of less than one that is equal to the ratio of the AOB to the AOI.  With the AFN equal 

to zero, the NAD value will approach a constant value that is defined by (25).
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Thus, the FOM should approach a value defined by (26). 
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For a range of yields closer to the actual yield, the FOM will move to a lower 

value.  Theoretically, given a perfect prediction, the FOM would reach a value of zero.  

The actual numerical value of the FOM, as well as its behavior in this yield range, will 

vary based on how the AOV, APR, AFN, and AFP

Yield Estimates and Error in FOM 

 change. 

The FOM places equal emphasis on comparing the physical extent of 

contamination, quantified by the MOE, and the difference between the predicted and 

observed dose rates, as quantified by the NAD.  The lowest FOM value will occur at a 

yield—designated as the best-fit yield—that best reproduces the DNA-EX dose rate 

contour.  Error in FOM measurement provides a quantifiable relationship between dose 

rate contours and associated yields.  The Error in FOM is defined by (27), where FOMBF 

and FOMi

 

 are the FOM for the best-fit yield and the yield being considered, respectively. 

Error in FOM i

BF

FOM
FOM

=  (27) 
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 The behavior of the Error in FOM depends on how well the model recreates the 

DNA-EX dose rate contour and the sensitivity of the model to changes in yield.  If a 

model could recreate a DNA-EX dose rate contour perfectly at the actual weapon yield, 

the Error in FOM measurements would depend only on model’s sensitivity to yield 

changes.  Since neither HPAC nor the FDC is a perfect model, the Error in FOM 

measurements will depend both on how well dose rate contours can be recreated and 

model sensitivity to yield changes. 

MOE-NAD Isoline Graph 

The relationship of a dose rate contour to the MOEx, MOEy

Figure 13

, and NAD can be 

represented in graphical form.   shows the relationship of various dose rate 

contours and their placement on a plot of MOEx and MOEy with NAD isolines.  For 

observed and predicted dose rate contours with almost no overlap, but with large AFP and 

AFN areas, the NAD is large and the MOE values plot in the lower left quadrant of the 

chart.  As the AFN decreases while the AFP remains large, the NAD value would move to 

the right along the Decreasing False Negative axis.  In the case of an AFP decrease with a 

large AFN, the NAD value would move up along the Decreasing False Positive axis.  An 

increase in overlap and equally decreasing AFP and AFN values demonstrates a better 

match of predicted and observed dose rate contours, and moves up and to the right along 

the line AFP = AFN. 
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Figure 13.  Relationship of Dose Rate Contour Behavior and MOE-NAD Graph Placement 

 

MOE-NAD Isoline Behavior for Low Yields 

As previously stated, the behavior of the MOEx, MOEy

Predicted Observed Overlap

, and NAD for yields 

much lower and higher than the actual yield can be deduced.  For yields between the low 

and high end yields, the behavior is less certain.  If the weather and model were perfect, 

the FOM would approach zero at some yield.  In this case neither the weather nor the 

model is perfect but some general observations can be noted. 
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For lower-end yield estimates, the predicted dose rate contours cover only a 

fraction of the AOB so the MOEx must be a number much smaller than one.  Since the 

yield is much smaller than the actual yield, the bulk of the APR is contained within the 

AOB so the MOEy approaches one.  Since the AOV is small compared to the sum of the 

AFN and AFP

Capped and Uncapped Cloud Tops and Vertical Distribution of Activity 

, the NAD will approach one.  Numerically, the FOM should be a relatively 

large number.  From a graphical perspective, the small yield dose rate contour severely 

under-predicts the actual dose rate contour and will be located in the upper left quadrant 

of a MOE-NAD Isoline graph. 

The vertical distribution of activity in a radioactive cloud after an explosion will 

certainly affect subsequent fallout deposition.  The DNA-EX lists the observed cloud top 

height for all six tests studied in this thesis.  The values of the DNA-EX cloud top heights 

are accepted as true.  For a given yield, the FDC calculates the distribution of activity 

using (5).  The activity distribution for each particle size group is calculated up to a 

particle-size dependent stabilization height, g
ctZ , defined by (8).     

Figure 14 shows an example distribution of activity for a stabilized cloud.  Note 

that some of the activity appears as a tail near ground elevation.  This is the fraction of 

activity from the particle size groups that had a stabilization height at or below ground 

level.  This activity is placed at 10m above ground level and deposits at ground zero 

during the first time step. 

For an uncapped cloud top, the initial activity distribution is accepted as shown.  

For capped cloud tops, the FDC forces all activity (through normalization) into the 
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fraction of the distribution that is below the observed cloud top height.  For each particle 

size group, the distribution below the cloud top is normalized and the total activity from 

the equal activity particle size group is distributed proportionally to the normalized 

distribution below the observed cloud top. 

 

 

Figure 14.  Activity Distribution of Initial Stabilized Cloud 

 

MOE-NAD Isoline Behavior for Capped and Uncapped Cloud Tops 

For both capped and uncapped cloud tops, the vertical distribution of activity and 

winds will determine what fraction of activity is deposited within the AOI.  It is 
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important to note that for any particles that are grounded prior to the switch from ground-

zero winds to reanalysis winds, the horizontal distribution of an activity wafer changes 

with yield but the center of deposition for the wafers do not change. 

For both capped and uncapped cloud top iterations, if the cloud top height does 

not exceed the observed cloud top, then the specific fractions of activity that will deposit 

within the AOI will be very similar.  The dose rate contours for capped and uncapped 

cases will be the same for the same yield.  A plot of the MOEx and MOEy values for 

these yields on a MOE-NAD Isoline graph will overlap each other. 

For capped cloud tops in which the calculated cloud top exceeds the observed 

cloud top, the fraction of total activity deposited will remain the same as the fraction of 

total activity deposited for the case where the calculated and observed cloud tops are the 

same.  Since the deposition centers for the wafers of particles are deposited in the same 

location but the horizontal distributions of the activity have changed, the overall shape 

(but not the values) of the dose rate contours should remain similar.  The MOEx, MOEy, 

and NAD will vary less with incremental changes in yield and the data points for the 

varying yields will begin to stack up on a MOE-NAD Isoline graph. 

For uncapped cloud tops in which the calculated cloud top exceeds the observed 

cloud top, the fraction of total activity deposited in the AOI is reduced.  A plot of the 

MOEx and MOEy values for these yields against their capped cloud top counterparts on a 

MOE-NAD Isoline graph may diverge as the vertical distribution of activity between the 

clouds becomes more disparate. 
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III. Approach 

This section provides an overview of the methodology used to reproduce dose rate 

contours, compare them to historic values, and to estimate weapon yield from inversion 

of dose rate contours.  HPAC, due to its widespread employment throughout DTRA and 

other organizations, was selected as the industry standard to compare to a user developed 

FDC.  An in-depth explanation of program development and program validation are 

addressed.  A schematic providing an overview of the problem solving approach taken is 

displayed in Figure 15.   

 

Figure 15.  Problem Solving Approach 
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Program Development 

The overall goal of the FDC program was to create a tool that efficiently and 

effectively models nuclear fallout.  Critical to FDC validation was the ability to create 

fallout patterns that closely matched dose rate contours from the selected tests while 

minimizing computational time and complexity.   

Program Selection 

Different versions of smear and disk tossing programs were considered.  The 

author developed a traditional AFIT smear program and a modified wafer-tosser 

program, the FDC.  The smear program forced the entire height of the cloud to translate 

with the same velocity as activity was deposited on the ground, limiting the effects of 

winds at altitude.  The wafer-tosser program accounted for changes to wind velocity at 

altitude, allowing for independent transport and deposition of each wafer.  The FDC was 

employed for future study because it provided better results than the smear program.  

Fallout Deposition Code Concept Development 

 The FDC was initially designed to model the movement and deposition of a single 

particle.  At the time of stabilization, the particle would have a certain amount of activity.  

From its location in the cloud at the time of stabilization, it would begin to fall.  The 

particle would quickly reach its terminal velocity and gradually slow down as the density 

of the atmosphere increased.  The amount of time the particle would remain aloft is 

characterized by (28), where oz is the initial particle height, gzz is the deposition height, 

and avgv is the average fall velocity. 
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Lateral movement during particle fall was determined by the effects of the horizontal 

winds, with the particle ultimately settling at some lateral distance from its initial location 

described by (29). 
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The FDC uses linear approximations to solve equations (28) and (29), and subsequently 

transports all wafers for each particle group size to deposition.  The activity in each slab 

is transported as a wafer with no vertical thickness.  The activity in each wafer is equal to 

the fraction of activity for the associated particle group that was present in a 

corresponding slab of discrete thickness in the initial stabilized cloud.  The fall velocity 

for the individual particle is treated as the mean velocity of the wafer.  The distribution of 

particles within the wafer is modeled using a simple Gaussian distribution around the 

deposition center. 
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Fallout Deposition Code Assumptions 

 Several assumptions were made to ensure code simplicity and computational 

efficiency.  The general assumptions include: 

• No agglomeration during particle fall 
• No vertical winds 
• Baker’s bi-modal distribution of activity applies 
• 100 equal activity particle size groups 
• Activity is volumetrically distributed 
• Vertical and horizontal distribution of activity within a particle group are 

Gaussian 

Fallout Deposition Code Structure 

An overview of the code is presented in Figure 16.  The main program, Fallout, is 

the computational backbone.  In sequence, for a single test shot, the program creates 

equal activity size groups, calls test shot information, computes an initial stabilized cloud, 

and reads in wind data.  By radius group, the program calculates disk translation, updates 

dispersion, and allocates activity to each wafer.  (Although not used, the program also has 

the ability to determine the highest-altitude wafer that must be considered for deposition 

to occur based on a scenario run time.)  The code then deposits activity on the ground for 

each wafer working from the lowest to highest wafer.  The process is repeated until all 

deposition is complete and data is output to a file.  Detailed comments are found in the 

code itself and are on file at AFIT.  The important equations, assumptions, and features of 

each section of the code are conveyed in subsequent sections. 
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Figure 16.  Fallout Deposition Code Framework 

 

Code Highlights 

The Main Program serves as the driver to the entire code.  It may be modified to 

allow the code to conduct related tasks.  From this program, the user may conduct single 

wind, temporal winds, or weather reanalysis trials for each detonation. 

The Particle Radius module uses a modification of a program that Garcia 

developed to create 100 volumetrically distributed equal-activity particle size groups 

[28].  This subroutine creates a user-specified number of equal activity groups, assuming 

volumetrically distributed activity, and determines particle radii to within 10-6
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Particle radii are determined by solving the cumulative distribution function (30) at 

specified intervals. 
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The computational algorithm used to approximate the solution is (31). [29:932] 
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The test shots module defines the key parameters for each of the DNA-EX tests 

considered, as well as information controlling grid parameterization.  The fallout 

deposition scenario spatial area, run time, height of burst, tropopause height, and cloud 

top height may be changed here. 

The Initialize Cloud module creates the initial stabilized cloud and particle 

distributions necessary for transport.  The Cloud Rise function computes the cloud center 

height based on Hopkins’ empirical fit defined by (1).  Particle group standard deviation 

in the x and y-directions are calculated Pugh’s equation (6) and in the z-direction using 

Conners’ equation (7).  These deviations are used to create the horizontal and vertical 

distributions of activity in the initial stabilized cloud using equation (5).  Toroidal growth 

is accounted for using Pugh’s equation (16). 

The Max Elevation module contains a subroutine that calculates the maximum 

altitude that needs to be considered based on particle size, fall time, and time of interest.  

Although not required for functionality, this module decreases run time by eliminating 

the need to perform calculations on wafers that are not deposited by the time of interest.  

For purposes of this study, this module was not employed because all wafers were 

transported to deposition or until they left the deposition grid. 
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The Winds module contains three separate subroutines.  The single and temporal 

(double) wind subroutines import wind observations from known altitudes, convert to 

required units, and calculate x and y wind components at all elevation steps.  When these 

subroutines are in use, there is no temporal variation of wind speeds, and the wind speeds 

only change from vertical movement through the wind profile. 

The time-variable winds (reanalysis winds) subroutine accounts for both temporal 

and spatial variation of winds.  The profile of wind speed components are retrieved for 

the entire spatial and temporal domain.  To determine the wind speed at a point of 

interest, an inverse-distance weighting of spatial and linear interpolation of temporal data 

is employed.   

Wind component values are calculated using an inverse-distance weighted spatial 

Kriging of 16 known wind velocities surrounding the point of interest for both the start 

and end of a time step.  Equation (32) describes how the weights are calculated, where R 

is the distance from the interpolation point to the most distant scatter point, ih is the 

distance from the interpolation point to the scatter point i, and n is the number of scatter 

points. 
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The wind speeds are calculated using (33), where effv  is the speed at the interpolation 

point and iv  is the speed in the ith data point.  The method is used to calculate wind 

components in the x-direction (vx) and y-direction (vy) separately. 
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The effective wind speed for the wafer is calculated using a linear temporal 

interpolation between the known wind speeds at the beginning and end of the time steps.  

The temporal interpolation is described by (34), where x effv −  is the effective speed in the 

x-direction, ,x iv  is the speed in the x-direction at the ith
, 1x iv + time bracket,  is the speed in 

the x-direction at the ith+1 time bracket, and t* is the difference in seconds of the current 

time and the ith
y effv − time bracket.  A similar equation is used to calculate . 

 
*

, ,, 13600
( )x i x ix ix effv tv v v+− = + −  (34) 

The program has a built-in check to ensure the linear interpolation time step is 

limited to 10 seconds or less. If the time step is greater than 10 seconds, the program 

reduces the time step and repeats the interpolation process.   

Figure 17 shows a graphical representation (not to scale) of 16-point spatial 

Kriging for successive time steps showing a wafer center translating from near the 22 to 

the 32 grid point. 

 

 
 

Figure 17.  16-Point Spatial and Temporal Kriging 
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The Transport module conducts wafer translation and updates wafer lateral 

dispersion, effectiveσ .  The Transport module contains separate modules corresponding to 

the different wind capabilities.  The Update Sigma module accounts for toroidal growth 

during the first three hours of transport and accounts for particle dispersion in the x and y 

directions separately using Pugh’s numerical fit, (6), to calculate the effective dispersion 

from (18).  The Update Sigma also models dispersion in the x and y directions separately 

using a Pasquill Turbulent Growth (PTG) equation described by (35), where the Pasquill 

Turbulent Type (PTT) is a weather condition fitting parameter, xσ  is the dispersion in 

the x direction, and y is the translation of the wafer in the y direction.  

 
1 0.0001x

yPTT
y

σ =
+

 (35) 

PTT values of 0.16 and 0.11 were used for surface and buried bursts, respectively, which 

correspond to moderately unstable and slightly unstable boundary layer conditions. 

Once the effectiveσ calculated using the PTG dispersive growth is larger than that 

calculated using Pugh’s numerical fit, further dispersion calculations are conducted using 

the PTG model.  This transition from Pugh to PTG dispersive growth was implemented 

because the PTG better described late time dispersive growth. 

An additional feature of the reanalysis transport module is that it integrates terrain 

into the model.  (The single and multiple wind modules operate under a flat earth 

assumption.)  As the wafer center passes from one elevation to the next, the program 

interpolates elevation data, which is included in the high resolution mesoscale reanalysis 

weather grid surrounding a disk center, to determine if deposition has occurred. 
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Other modules include the Time Step module, which calculates the particle fall 

time for each incremental vertical step; the Fall Module, which uses the US Standard 

Atmosphere module to determine the particle fall velocity at each altitude step; the Create 

Check Files module, which creates output files that are used to verify intermediate 

calculations; the Constants module, which provides constants that are used throughout the 

program; and the Kinds module, which specifies precision for calculations. 

Program Validation 

 This section describes the methods used to validate the FDC.  Program validation 

focused on verification of numerical correctness of equations, realistic qualitative 

behavior of all subroutines, and modeling of simple test cases. 

Numerical Correctness and Precision 

 A thorough testing program was essential to development and validation of the 

FDC.  Equations were verified for numerical correctness against Mathematica and/or 

hand calculations.  Each equation was studied and alternative forms of the equation were 

written to account for the possibility of numerical inaccuracies.  Explanations for the 

different forms of each equation are written directly into the code.  Limiting assumptions 

that could affect the equation applicability are also cited. 

Qualitative Behavior 

After numerical precision and correctness was verified, each subroutine or 

function was checked for proper qualitative behavior.  Subroutines were created to allow 

checking of the qualitative behavior of all key subroutines or functions.  These check file 
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subroutines include files to allow checking of group radii; group stabilization heights; 

group initial top, bottom, and center locations; group initial dispersion in x, y, and z; fall 

times from one wafer to the next; translation in x and y directions at deposition; and 

dispersion in x and y directions at deposition. 

Modeling Test Cases 

 The FDC was subjected to a series of simple modeling tests.  The behavior of 

deposition was checked at yields from a range of 0.3KT to 1 MT.  A lower limit of 0.3KT 

was placed on the yield because smaller yields did not produce enough fallout to model 

them effectively. 

The behavior of the FDC was studied for single constant wind for all elevations, 

layered constant winds, smoothly varying winds in vertical layers, and time changing 

winds in vertical layers.  Time changing winds were studied with abrupt changes at one 

hour increments and for smooth changing temporally varied winds.  Changes to the 

number of particle size groups, number of wafers, and source normalization constant 

were also considered.  Currently, the program creates 100 equal activity particle size 

groups but only deposits the largest 81 groups.  These particle groups have a radius of 

19.357 microns or larger, and were selected because they make up the majority of the 

local fallout which is of interest in this study.  A slab thickness of 50m is used to create 

wafers from the initial stabilized cloud.  The activity within the slab is attributed to a 

wafer with no vertical thickness.  The slab thickness may be decreased in integer 

increments to 1m; however, no benefit to dose rate contour resolution was noted when 
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reducing the slab thickness to smaller values.  The FDC uses a source normalization 

constant of 
2

9 R-m7.452 10
hr-KT

x . 

An example of a generic contour produced using George parameters, with 

constant wind velocities of 4.47 m.s-1

Figure 18

 (10 mph) from 135 degrees for 10 hours switching 

abruptly to 45 degrees thereafter, is seen in .  As expected, the disk that deposits 

at 10 hours has traveled 160 km along the hotline, equal to translation of 113 km to the 

west and 113 km to the north. 

 

Figure 18.  Test Case Dose Rate Contours 

  

A graph of the normalized activity fraction for a single particle group is seen in 

Figure 19 for an uncapped cloud top.   
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Figure 19.  Normalized Vertical Distribution of Activity for 19.357 micron Particle Group 

 
The activity fractions calculated for capped cloud tops is derived from the same vertical 

distribution.  If the vertical distribution exceeds the cloud top height, the distribution is 

chopped off at the cloud top height, and activity is normalized and forced into the 

remaining layers. 

The dose rate contour for a particle group size of 19.357 microns is shown in 

Figure 20 with the corresponding horizontal dispersion displayed in Figure 21.  The 

effective dispersions in the x and y directions are equal because the winds selected were 

135 and 45 degrees, for which the sine and cosine components are equal. 
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Figure 20.  Dose Rate Contour for 19.357 micron Particle Group 

 

 

Figure 21.  Effective Dispersion in [m] by Elevation Group for 19.357 micron Particle Group 
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Optimization and Comments 

To facilitate FDC use over a broad range of applications, no attempt was made to 

optimize the code to fit any particular case.  The AOI for all cases, except for Johnie Boy, 

was set to a 200 x 200 mile grid centered over ground zero.  For Johnie Boy, the grid was 

limited to 230km x 230km because the DNA-EX dose rate contour was cut off at 115km 

north of ground zero.  An example of the spatial relationship between the DNA-EX dose 

rate contour area, weather grid, and AOI is shown in Figure 22. 

 

Figure 22.  Spatial Relationship of the DNA-EX Dose Rate Contour Area, Reanalysis Weather Grid, 
and AOI 
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Additional Codes 

Several additional codes were developed in support of this thesis.  The 

Time_Dependent_Winds FORTRAN code was developed to convert Jones’ weather 

reanalysis files into a format that could be used in the FDC.  The Create_Output_Grid 

was developed to create a latitude-longitude grid that could be used in HPAC to sample 

dose rates at the same locations where dose rates are calculated by the FDC.  The 

DNA_EX_Grids takes Chancellors’ dose rate contour digitization data and changes it to a 

numerical form that can be used for MOE/NAD analysis.  The MOE_NAD_ANALYSIS 

and MOE_NAD_ANALYSIS_HPAC programs conduct a point by point comparison of 

FDC and HPAC dose rates, respectively, against DNA_EX values and create 

MOE/NAD/FOM output files.  All programs are thoroughly commented in the body of 

the code. 
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IV. Results and Analysis 

 This section presents the results of the research conducted.  The results of the 

preliminary analysis are discussed, including justification for selection of the FDC over 

HPAC for further analysis.  Subsequent analysis considers use of the FDC to determine 

the best-fit yield and the yield estimates associated with 10%, 25%, and 50% Error in 

FOM.  The affects of capped and uncapped clouds on FDC dose rate contours is also 

discussed. 

Preliminary Results 

 HPAC 4.04.11 and FDC dose rate contours were compared against DNA-EX dose 

rate contours for each test.  Dose rate contours were recreated for each detonation using 

ground zero wind data and reanalysis weather data for a range of yields bracketing the 

DNA-EX recorded weapon yield.  The buried shot, ESS, was also modeled even though 

the FDC was not written to model buried bursts.  The HPAC parameters employed and 

the method used to create HPAC H+1hr dose rate contours are found in Appendix J: 

HPAC Parameters. 

Deposition calculations were performed using the AOI grid for each shot.  FOM 

calculations were limited to 100 miles in each cardinal direction from ground zero, except 

for Johnie Boy where a distance of 115km was used.  The DNA-EX minimum value dose 

rate contour listed for each shot was used for FOM analysis.  The vertical domain 

(altitude) was limited to the DNA-EX listed cloud top height.  There were slight 

differences between the DNA-EX cloud top heights and the corresponding FDC values 



  

60  

calculated at the weapon yield, as seen in Table 4.  The FDC predicted cloud top heights 

listed were calculated from (8) by adding the ground zero elevation and HOB, changing 

the reference from AGL to MSL.  The most significant differences in cloud top height 

prediction were for Operation TEAPOT—ESS and Operation PLUMBBOB—Smoky.  In 

these cases, the FDC predicted values were 50% and 30% higher than the observed cloud 

top heights, respectively.  All other cloud top heights were within 10-15% of observed 

values.  The significance of these differences is explored later. 

Table 4.  DNA-EX and FDC Cloud Top Heights 
 

OPERATION:  
Test 

DNA-EX [ft] FDC Calculated [ft] 

TUMBLER-SNAPPER:  
George 

37000 36966 

TEAPOT:  
ESS 

12000 18429 

TEAPOT:  
Zucchini 

40000 43733 

PLUMBBOB:  
Priscilla 

43000 45787 

PLUMBBOB:  
Smoky 

38000 49117 

SUNBEAM:  
Johnie Boy 

17000 17031 

 

An FOM comparison showed the FDC dose rate contours generally matched the 

DNA-EX contours more closely than HPAC 4.04.11 did for surface and surface contact 

bursts.  HPAC did, however, outperform the FDC for the buried burst ESS.  Table 5 

shows the MOEx, MOEy, NAD, spatial Figure of Merit (FMS), and FOM for HPAC and 

the FDC at five yields for each shot bracketing and including the historic yield.  Both 

HPAC and the FDC overestimated the yield of George and Johnie Boy.  HPAC estimated 

the actual yield of ESS more closely.  HPAC and the FDC performed equally well in 
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estimating the yield of Zucchini.  The FDC estimated the yield of Priscilla and Smoky 

more accurately.  The FOMs for HPAC, FDC capped cloud tops, and FDC uncapped 

cloud tops for the preliminary tests are found in Appendix A: FOM Comparison. 

Table 5.  HPAC and FDC Preliminary Results 
 

    HPAC FDC (Capped) 
Test Yield MOEx MOEy NAD FMS FOM MOEx MOEy NAD FMS FOM 

George 5 0.110 0.807 0.807 0.107 2.712 0.659 0.949 0.222 0.636 0.281 
  10 0.325 0.873 0.526 0.310 0.988 0.797 0.946 0.135 0.762 0.155 
  15 0.387 0.899 0.459 0.371 0.778 0.852 0.938 0.107 0.807 0.120 
  20 0.435 0.974 0.399 0.430 0.613 0.882 0.929 0.095 0.827 0.105 
  25 0.460 0.970 0.376 0.454 0.563 0.898 0.917 0.093 0.830 0.102 

ESS 0.5 0.451 0.824 0.417 0.411 0.685 0.295 0.959 0.549 0.291 1.032 
  1 0.536 0.550 0.457 0.373 0.840 0.370 0.934 0.470 0.361 0.798 
  2 0.611 0.436 0.491 0.341 0.951 0.415 0.917 0.429 0.400 0.695 
  5 0.725 0.437 0.455 0.374 0.809 0.464 0.902 0.387 0.442 0.598 
  10 0.804 0.443 0.428 0.400 0.718 0.497 0.895 0.361 0.470 0.541 

Zucchini 15 0.090 1.000 0.834 0.090 2.774 0.861 0.925 0.108 0.804 0.122 
  22 0.351 0.933 0.490 0.342 0.856 0.910 0.918 0.086 0.841 0.094 
  28 0.385 0.887 0.463 0.367 0.792 0.935 0.906 0.080 0.852 0.087 
  40 0.345 0.819 0.515 0.320 0.969 0.955 0.880 0.084 0.844 0.092 
  60 0.291 0.714 0.587 0.261 1.287 0.964 0.853 0.095 0.826 0.105 

Priscilla 32 0.037 1.000 0.928 0.037 4.796 0.843 0.702 0.234 0.621 0.304 
  35 0.150 1.000 0.739 0.150 1.910 0.854 0.695 0.234 0.621 0.303 
  37 0.208 0.978 0.658 0.207 1.460 0.858 0.691 0.235 0.620 0.305 
  45 0.664 0.861 0.250 0.600 0.330 0.871 0.680 0.236 0.618 0.307 
  60 0.831 0.789 0.191 0.680 0.236 0.884 0.664 0.242 0.611 0.316 

Smoky 35 0.064 0.471 0.887 0.060 5.094 0.832 0.703 0.238 0.616 0.311 
  40 0.139 0.323 0.806 0.108 3.804 0.837 0.701 0.237 0.617 0.310 
  44 0.248 0.333 0.716 0.166 2.491 0.842 0.699 0.236 0.618 0.308 
  50 0.329 0.336 0.667 0.200 2.005 0.846 0.695 0.237 0.617 0.310 
  60 0.419 0.347 0.620 0.234 1.626 0.851 0.691 0.237 0.617 0.309 

Johnie Boy 0.3 0.001 0.000 0.999 0.000 1335.585 0.238 0.824 0.630 0.227 1.422 
  0.5 0.001 0.000 0.999 0.000 1412.190 0.391 0.791 0.477 0.355 0.857 

 
1 0.001 0.000 0.999 0.000 1454.227 0.607 0.707 0.347 0.485 0.530 

  2 0.001 0.000 0.999 0.000 1488.855 0.700 0.686 0.307 0.530 0.443 
  5 0.002 0.001 0.999 0.000 1126.254 0.779 0.636 0.300 0.539 0.426 
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In the preliminary analysis, both HPAC and the FDC had a minimum FOM at the 

actual 28KT yield for Zucchini.  Numerically, the FDC dose rate contour FOM of 0.087 

was significantly better than the HPAC dose rate contour FOM of 0.792.  A visual 

comparison of FDC, DNA-EX, and HPAC dose rate contours for Zucchini at the actual 

yield of 28KT, as seen in Figure 23, shows that although both correctly predicted the 

yield, the FDC dose rate contour provided a more accurate fit.  Appendix B: Visual 

Comparisons of Historic Yields contains similar graphics for the remaining tests. 

 

 

Figure 23.  Operation TEAPOT—Zucchini FDC, DNA-EX, and HPAC Dose Rate Contours at 28KT 

 
Figure 24 and Figure 25 show the respective HPAC and FDC dose rate contours 

for yields of 15, 22, 28, 40, and 60KT. Both modeling tools show dose rate contours do 

change significantly over nearly a factor of two range of yields.  The graphics for the 

remaining tests are contained in Appendix C: Dose Rate Contour Changes As a Function 

of Yield. 
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Figure 24.  Operation TEAPOT—Zucchini 15, 22, 28, 40, and 60KT Yield HPAC Dose Rate 
Contours 
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Figure 25.  Operation TEAPOT—Zucchini 15, 22, 28, 40, and 60KT Yield FDC Dose Rate Contours 

 
 Based on preliminary results in which the FDC performed more accurately at 

yield estimation than HPAC, had generally better FOM values, and the author better 

understands how the FDC conducts transport and deposition, the FDC method was used 

for the remainder of this research. 
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Operation TUMBLER SNAPPER—George  

George was a 15KT tower burst with a HOB of 700 feet [25:93-97].   The site 

elevation was measured at 4027 ft and the cloud top height was 37,000 ft.  The DNA-EX 

contours, seen in Figure 26, show fallout deposition extended several hundred kilometers 

to the north and about 100 km east to west from ground zero. 

 

 

Figure 26.  Operation TUMBLER-SNAPPER—George Digitized DNA-EX Contour Plot 
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Figure 27 contains digital imagery of the terrain surrounding George.  A series of 

ridgelines run north to south, north of ground zero.  The terrain gradually rises to over 

6000 ft within 100 miles north of ground zero.   

 

 

Figure 27.  Operation TUMBLER-SNAPPER—George Terrain 

 
The H-hr winds for George are generally from the south, with speeds from 20 

mph at lower elevations to 50 mph at higher elevations.  Wind speeds are only provided 

to an altitude of 30,000 ft, which is 7,000 ft below the cloud stabilization height.  This 

research assumes the wind vector (41 mph at 190 degrees) for 30,000 ft applied at higher 

altitudes. 

The FDC was used to produce dose rate contours from 1 to 112KT for both 

capped and uncapped cloud tops cases for a 200 x 200 mile spatial AOI centered on 
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ground zero.  H-hr wind speeds were used for the first 3 hours, and wind vectors from 

reanalysis data thereafter.   

The FDC reproduced reasonable dose rate contours for both capped and uncapped 

cloud tops scenarios.  FOM analysis of the capped cloud top dose rate contours 

determined a best-fit yield of 23KT, and 10%, 25%, and 50% Error in FOM yield fits of 

17KT, 13KT, and 10KT.  An uncapped cloud top dose rate contour FOM analysis 

determined a best-fit yield of 26KT, and 10%, 25%, and 50% Error in FOM yield fits of 

18KT, 14KT, and 11KT.  Figure 28 shows the dose rate contours produced using capped 

cloud tops. 

 

Figure 28.  Operation TUMBLER-SNAPPER—George 50% (10KT), 25% (13KT), 10% (17KT) 
Error in FOM and Best-fit Yield (23KT) Dose Rate Contours 
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The FDC effectively reproduced dose rate contours for both capped and uncapped 

cloud top cases.  Best-fit yield estimates for both cases were high but within a factor of 

two of actual weapon yield.  The high MOE values demonstrate the DNA-EX winds and 

weather reanalysis data provide a reasonable estimate of winds during fallout deposition.  

Figure 29 shows a plot of the MOEx and MOEy

Appendix D: 

George FOM

 values for both cloud top cases against 

NAD isolines for the range of yields.  The capped and uncapped cloud top scenarios 

behave similarly throughout the range of yields.  The MOE, NAD, FOM, and relative 

FOM (REL FOM) values for the capped cloud top yields are listed in 

. 
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Figure 29.  Operation TUMBLER-SNAPPER—George MOE-NAD Isolines 
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Operation TEAPOT—ESS 

 ESS was a 1KT burst with a DOB of 67 feet [25:201-207].  The weapon was 

buried in a filled shaft.  The site elevation was 4288 ft and the cloud top height was 

12,000 ft.  The DNA-EX contours, shown in Figure 30, shows fallout deposition 

extended several hundred kilometers to the east.  The detonation created a 292 ft diameter 

crater that was 96 ft deep. 

 

 

Figure 30.  Operation TEAPOT—ESS Digitized DNA-EX Contour Plot 

 
Figure 31 shows digital imagery of the terrain surrounding ESS.  The terrain has 

numerous small ridges located to the south and east of ground zero.  Southeast of ground 

zero, the terrain is at lower elevation than the surrounding terrain and fairly flat out to 50 

miles.  Thereafter, two major ridgelines run north to south.   
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Figure 31.  Operation TEAPOT—ESS Terrain 

 
The DNA-EX winds range from 310 to 360 degrees and 12 to 29 mph from 

12,000 feet and below.  These winds can lead to deposition to the southeast but not due 

east. The DNA-EX contours confirm that initial deposition occurred along the lower 

elevation area located immediately to the southeast of ground zero and continued in that 

direction before changing direction to due east after 75miles.  H-hr wind speeds were 

used for 2 hours after detonation, and reanalysis wind data was used thereafter. 

The FDC was used to produce dose rate contours from 0.3 to 20KT at 0.1KT 

increments for both capped and uncapped cloud tops.  Fallout deposition was calculated 

for a 200 x 200 mile AOI centered at ground zero.  The FDC failed to produce a 

reasonable reproduction of the ESS dose rate contours.  Figure 32 shows the MOEx and 

MOEy plot against NAD isolines for the capped and uncapped cases.  Over the range of 

yields, FOM values never reached a minimum so no estimation of yield could be made.  
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MOE, NAD, and FOM values for ESS capped cloud top dose rate contours for the range 

of yields are detailed in Appendix E: ESS FOM. 

 

 

Figure 32.  Operation TEAPOT—ESS MOE-NAD Isolines 

 
 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

D
ec

re
as

in
g 

Fa
ls

e 
Po

si
ti

ve
 [M

O
Ey

]

Decreasing False Negative [MOEx]

Ess MOE Against NAD Isolines

C-100mi NC-100mi



  

73  

The FDC failed to recreate a reasonable Operation TEAPOT—ESS dose rate 

contour.  The FDC failed to model ESS adequately, in part, because it uses a distribution 

of particle size groups developed to model surface or surface contact bursts, only deposits 

larger particle size groups (at least 19.357 microns), and creates an initial vertical 

distribution of activity that cannot create a separate base surge cloud of larger particles 

and main radioactive cloud of much smaller particles. 

Poor DNA-EX and reanalysis wind data also precluded effective modeling of 

ESS.  However, the uncapped cloud top iterations provide interesting insights.  At higher 

yields, these shots showed the general curvature of dose rate contours to the east as 

reported in the DNA-EX.  The same behavior was not observed from the capped cloud 

tops.  This behavior indicates that much of the activated debris rose significantly higher 

than the observed cloud top height.  Uncapped cloud top dose rate contours for 5KT, 

7.5KT, and 10KT yields are seen in Figure 33 through Figure 35. 
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Figure 33.  Operation TEAPOT—ESS (No Cap) 5KT Yield Dose Rate Contours 

 

 

Figure 34.  Operation TEAPOT—ESS (No Cap) 7.5KT Yield Dose Rate Contours 
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Figure 35.  Operation TEAPOT—ESS (No Cap) 10KT Yield Dose Rate Contours 
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Operation TEAPOT—Zucchini 

 Zucchini was a 28KT tower burst with a HOB of 500 feet [25:240-245].  The site 

elevation was measured at 4245 ft and the cloud top height was measured at 40,000 ft and 

bottom at 25,200 ft.  The DNA-EX contours, shown in Figure 36, shows fallout 

deposition occurred initially to the southeast and eventually to the northeast. 

 

 

Figure 36.  Operation TEAPOT—Zucchini DNA-EX Contour Plot 

 
Figure 37 contains digital imagery of the terrain surrounding Zucchini.  There are 

numerous southwest-northeast running ridgelines throughout the area immediately south 

of ground zero.  A large series of north-south running ridgelines are located from 50 to 

100 miles east of ground zero.  The largest of the ridgelines runs directly north to south 

approximately 100 miles east of ground zero. 
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Figure 37.  Operation TEAPOT—Zucchini Terrain 

 
The DNA-EX winds provided for Zucchini are fairly uniform from the bottom to 

the top of the stabilized cloud, at roughly 260 to 270 degrees and 60 to 80 mph.  Lower-

altitude winds are generally from 300-320 degrees with speeds decreasing from 60 mph 

to roughly 10 mph near the surface.  These winds explain why initial deposition of 

activity is to the southeast and eventually pushes to the northeast.  H-hr wind speeds were 

used for the first 2 hours.   

The FDC was used to produce dose rate contours from 1 to 112KT at 1KT 

increments for capped and uncapped scenarios for a 200 x 200 mile AOI.  FOM analysis 

of the capped cloud top dose rate contours determined a best-fit yield of 29KT, and 10%, 

25%, and 50% Error in FOM yield estimates of 22KT, 17KT, and 14KT.  An uncapped 

cloud top dose rate contour FOM analysis determined a best-fit yield of 32KT, and 10%, 
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25%, and 50% Error in FOM yield fits of 22KT, 18KT, and 14KT.  Figure 38 shows dose 

rate contours for the capped cloud top yield estimates. 

 

Figure 38.  Operation TEAPOT—Zucchini 50% (14KT), 25% (17KT), 10% (22KT) Error in FOM 
and Best-fit Yield (29KT) Dose Rate Contours 
 
 

The FDC recreated dose rate contours for capped and uncapped cloud top 

scenarios that closely matched the DNA-EX dose rate contours.  Best-fit yield estimates 

for both capped (29KT) and uncapped (32KT) were within 15% of the actual yield 

(28KT).  The high MOE and low NAD values indicate that the DNA-EX winds and the 

weather reanalysis data provide a reasonable approximation of winds during fallout 

deposition.  Figure 39 shows a plot of the MOEx and MOEy
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 values against NAD isolines 

for capped and uncapped clouds for the range of yields.  The behavior of the curves 
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correlates well until the uncapped cloud tops diverge for larger yields.  MOE, NAD, 

FOM, and REL FOM values for all Zucchini dose rate are detailed in Appendix F: 

Zucchini FOM. 

 

 

Figure 39.  Operation TEAPOT—Zucchini MOE-NAD Isolines  
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Operation PLUMBBOB—Priscilla 

 Priscilla was a 37KT balloon burst with a HOB of 700 feet [25:274-278].  The site 

elevation was measured at 3076 ft, cloud top height at 43,000 ft, and cloud bottom height 

of 24,000 ft.  The DNA-EX contours, seen in Figure 40, shows fallout deposition 

extended several hundred kilometers to the east.   

 

 

Figure 40.  Operation PLUMBBOB—Priscilla DNA-EX Contour Plot 

 
 

The DNA-EX winds from the cloud top to cloud bottom are generally 250 to 280 

degrees with speeds from 50 mph decreasing to 8 mph as altitude decreases.  Lower 

altitude winds are generally 240 to 210 degrees and less than 10 mph.    H+1hr wind 

speeds were used for the first 3 hours and reanalysis wind data thereafter. 

Figure 41 contains digital imagery of the terrain surrounding Priscilla.  Several 

north-south running ridgelines are located at roughly 25 mile intervals to the east of 

ground zero.  Higher terrain is located immediately to the south and southeast of ground 

zero. 



  

81  

 

Figure 41.  Operation PLUMBBOB—Priscilla Terrain 

 
Capped and uncapped cloud top FDC iterations were performed for a yield range 

of 1 to 112KT at 1KT increments to produce dose rate contours for a 200 x 200 mile AOI 

centered at ground zero.  FOM analysis of the capped cloud top dose rate contours 

determined a best-fit yield of 36KT, and 10%, 25%, and 50% Error in FOM estimates of 

27KT, 25KT, and 22KT.  The uncapped cloud top analysis predicted a yield of 36KT, 

with 10%, 25%, and 50% Error in FOM estimates of 27KT, 25KT, and 23KT, 

respectively.  Figure 42 shows the dose rate contours produced by the FDC under capped 

cloud top conditions. 
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Figure 42.  Operation PLUMBBOB—Priscilla 50% (22KT), 25% (25KT), 10% (27KT) Error in 
FOM and Best-fit Yield (36KT) Dose Rate Contours 
 
 

The FDC recreated reasonable dose rate contours for Priscilla using both capped 

and uncapped cloud tops.  The best-fit yield estimates for both methods (36KT) closely 

estimated the actual yield (37KT).    The MOE and NAD values were reasonable 

indicating the DNA-EX and reanalysis weather data provided acceptable estimates of 

winds during fallout deposition.   Figure 43 shows a plot of the MOE values with NAD 

isolines for capped and uncapped cloud tops over the range of yields.  The behavior of 

the curves correlates well over the range of yields.  Priscilla MOE, NAD, FOM, and REL 

FOM values are found in Appendix G: Priscilla FOM.  
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Figure 43.  Operation PLUMBBOB—Priscilla MOE-NAD Isolines 
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Operation PLUMBBOB—Smoky 

 Smoky was a 44KT tower burst with a HOB of 700 feet [25:326-330].  The site 

elevation was measured at 4479 ft and the cloud top height was measured at 38,000 ft.  

The DNA-EX contours, shown in Figure 44, shows fallout deposition occurred generally 

east for 200 kilometers and then to the northeast.   

 

 

Figure 44.  Operation PLUMBBOB—Smoky Digitized DNA-EX Contour Plot 

 
The DNA-EX H-hr reported winds are generally north to south at less than 10 

mph for elevations below 15,000 ft and from west to east at 30-40 mph at higher 

elevations.  H-hr wind speeds were used for the first 4 hours.  Time of use was extended 

beyond 3 hours because the H+3hr wind speeds were very similar to the H-hr winds. 
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Figure 45 contains digital imagery of the terrain surrounding Smoky.  A ridgeline 

running northwest-to-southeast is located immediately to the southeast of ground zero.  A 

north-to-south running valley is located immediately south of the detonation point.  A 

series of north-to-south running ridgelines are located 50 to 80 miles east of ground zero. 

 

Figure 45.  Operation PLUMBBOB—Smoky Terrain 

 
The FDC was used to create capped and uncapped dose rate contours in a 200 x 

200 mile spatial AOI centered on ground zero for yields from 1 to 112KT.  FOM analysis 

of the capped cloud top dose rate contours yielded a best estimate yield of 21KT, and 

10%, 25%, and 50% Error in FOM yield fits of 10KT, 8KT, and 6KT.  The uncapped 

cloud top dose rate contours estimated a best-fit yield of 25KT and 10%, 25%, and 50% 

Error in FOM estimates of 10KT, 7KT, and 6KT.  Figure 46 shows the capped cloud top 

dose rate contours. 
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Figure 46.  Operation PLUMBBOB—Smoky 50% (6KT), 25% (8KT), 10% (10KT) Error in FOM 
and Best-fit Yield (21KT) Dose Rate Contours 
 
 

The FDC recreated reasonable dose rate contours for both capped and uncapped 

cloud top cases.  Best-fit yield estimates for both cases were low at roughly half of the 

actual weapon yield.  The MOE values demonstrate the DNA-EX winds and weather 

reanalysis data provide a reasonable estimate of winds during fallout deposition.  Figure 

47 shows the MOE-NAD isoline plot for the range of yields for both capped and 

uncapped cloud top conditions.  MOE, NAD, FOM, and REL FOM values for Smoky 

dose rate contours for yields from 1 to 112KT are found in Appendix H: Smoky FOM. 
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Figure 47.  Operation PLUMBBOB—Smoky MOE-NAD Isolines  
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Operation SUNBEAM—Johnie Boy 

 Johnie Boy was a 0.5KT shallow buried burst with a DOB of 2 feet [25:563-567].   

The site elevation was measured at 5153 ft, cloud top height at 17,000 ft, and cloud 

bottom height at 12,500 ft.  The DNA-EX contours, shown in Figure 48, shows fallout 

deposition occurred generally to the north to approximately 115 km.   The blast created a 

122 ft diameter crater 30 ft in depth. 

 

 

Figure 48.  Operation SUNBEAM—Johnie Boy Digitized DNA-EX Contour Plot  
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The DNA-EX winds for Johnie Boy are generally 30 mph from the southwest 

above 14,000 ft, 15 mph and from the south from 10,000 to 14,000 ft, and 10 mph from 

the southeast at lower elevations.  H-hr wind speeds were used for the first 3 hours. 

Figure 49 contains digital imagery of the terrain surrounding Johnie Boy.  The 

area immediately around ground zero is part of an area of higher elevation with irregular 

ridgelines.  About 25 miles north-northeast of ground zero is an area of lower elevation 

that runs south to north. 

 

 

Figure 49.  Operation SUNBEAM—Johnie Boy Terrain 
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For a 144 x 144 mile spatial grid, the FDC was used to produce dose rate contours 

from 0.3 to 10KT at 0.1KT increments for capped and uncapped cloud top conditions.  

Capped cloud top dose rate contour FOM analysis determined a best-fit yield of 3.5KT, 

and 10%, 25%, and 50% Error in FOM estimates of 1.6KT, 1.0KT, and 0.7KT.  An 

uncapped cloud top dose rate contour FOM analysis estimated the yield at 1.5KT, and 

10%, 25%, and 50% Error in FOM estimates of 0.8KT, 0.6KT, and 0.5KT.  Figure 50 

shows the capped cloud top dose rate contours. 

 

 

Figure 50.  Operation SUNBEAM—Johnie Boy 50% (0.7KT), 25% (1.0KT), 10% (1.6KT) Error in 
FOM and Best-fit Yield (3.5KT) Dose Rate Contours 
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The FDC produced reasonable dose rate contours for both capped and uncapped 

cloud top cases.  The best-fit yield estimates for the capped (3.5KT) and uncapped 

(1.5KT) cases were significantly higher than the actual yield (0.5KT).  MOE values 

indicate that the DNA-EX winds and weather reanalysis data provide a reasonable 

estimate of winds during fallout deposition.  It is important to note that the particle size 

distribution for Johnie Boy likely falls somewhere between the FDC calculated 

distribution and one that would be more suitable for a buried burst.   Figure 51 shows the 

capped and uncapped cloud top MOE-NAD isolines graph for the range of yields.  The 

MOE, NAD, FOM, and REL FOM values for Johnie Boy dose rate contours are included 

in Appendix I: Johnie Boy FOM. 
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Figure 51.  Operation SUNBEAM—Johnie Boy MOE-NAD Isolines 
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Capped and Uncapped Yield Estimation Results 

 The capped and uncapped FDC iterations produced comparable best fit yield 

estimates close to the historic yield for five of the six tests considered.  The lone 

exception was Operation TEAPOT—ESS.  The FDC failed to model this detonation well 

enough to determine a best fit yield estimate for either capped or uncapped cloud top 

conditions. 

Table 6 lists the best-fit and Error in FOM yield estimates for capped and 

uncapped cloud top cases for the five remaining tests.  Yield estimates were not 

interpolated between data points.  The lower yield value was taken when the acceptable 

Error in FOM value fell between yields. 

 

Table 6.  Capped and Uncapped Cloud Height Yield Predictions 
 

  Capped Cloud Top Uncapped Cloud Top 

Shot Yield 
[KT] 

Best 
Fit 

Yield 
[KT] 

10% 
FOM 
Error 
[KT] 

25% 
FOM 
Error 
[KT] 

50% 
FOM 
Error 
[KT] 

Best 
Fit 

Yield 
[KT] 

10% 
FOM 
Error 
[KT] 

25% 
FOM 
Error 
[KT] 

50% 
FOM 
Error 
[KT] 

Tumbler 
Snapper: 
George 

15 23 17 13 10 26 18 14 11 

Teapot: 
Zucchini 28 29 22 17 14 32 22 18 14 

Plumbbob: 
Priscilla 37 36 27 25 22 36 27 25 23 

Plumbbob: 
Smoky 44 21 10 8 6 25 10 7 6 

SUNBEAM: 
Johnie Boy 0.5 3.5 1.6 1.0 0.7 1.5 0.8 0.6 0.5 
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A statistical analysis of the best-fit yield estimates determined, with 90% 

confidence, the actual yield falls within a factor of 0.46 of the predicted yield for the 

capped cloud top case and within a factor of 0.30 for the uncapped cloud top case.  The 

10%, 25%, and 50% Error in FOM predictions provide estimates of how uncertainty in 

dose rate recreation affects yield estimates.  The 90% confidence interval for both capped 

and uncapped cloud tops was a factor of 1.3 for a 10% Error in FOM estimate; 1.7 and 

2.1, respectively, for 25% Error in FOM; and a factor of 2.5 for 50% Error in FOM.  

Given the small sample size, uncertainty in weather data, uncertainty of modeling 

parameters (such as source normalization constant, cloud rise, and particle size 

distribution), and dose rate measurements, this method may be used to realistically 

estimate yield to within a factor of two.  Details of the statistical analysis performed on 

the yield estimates are included in Appendix K: Statistical Analysis. 

Validity of Weather Data 

Figure 52 provides insight into the employment of the FDC to recreate dose rate 

contours and weather data validity.  The graph shows, from right to left, the 50%, 25%, 

and 10% Error in FOM and best-fit yield estimates for each surface contact burst.  The 

location of the estimates for George and Zucchini at the top right of the graph 

demonstrate that the combination of ground zero and reanalysis weather winds provide an 

excellent recreation of the winds during fallout deposition.  The wind data associated 

with the remaining three shots all provided reasonable estimates, allowing fair 

reproductions of the associated DNA-EX dose rate contours.  The use of ground zero and 
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high resolution mesoscale reanalysis weather data winds within 100 miles of ground zero 

has been validated. 

 

Figure 52.  Best-fit and Error in FOM MOE-NAD Isolines 
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Sources of Error 

 Measurement, sampling, and modeling errors all contribute to differences 

between FDC and DNA-EX contours.  All activity measurements were adjusted to H+1 

hr dose rates using the Way-Wigner approximation.  Post-test dose rates were measured 

when activity levels permitted.  Generally, more measurements were taken close to 

ground zero to allow establishment of a more detailed on-site grid.  Those readings of 

most interest to the establishment of off-site dose rate contours were taken using ground 

mobile monitors.  These ground mobile monitors were used to take activity 

measurements over a large area in the hours and days following each test.  In most cases, 

the dose rate contours were taken over areas that were tens of thousands of square miles.  

Producing an accurate dose rate contour over such a large area was certainly a difficult 

task.  For example, George’s fallout footprint covered an area of over 12,000 square 

miles, so more than 31,000 dose rate measurements would be required to construct 

contours for a uniform grid with 1 km fidelity.  The sampling plans after these tests were 

nowhere near that detailed. 

 The FDC, like HPAC 4.04.011, neglects the affects of winds during cloud rise.  

The FDC starts with a stabilized cloud horizontally centered above ground zero.  The 

model fails to account for winds during cloud rise and the location of the cloud upon 

stabilization.  These differences are likely part of the reason that the FDC and DNA-EX 

dose rate contours differ somewhat near ground zero. 

The FDC initial stabilized cloud top and bottom heights were constructed using 

Hopkins’ numerical fits with Conners’ numerical fit for the standard deviation to 

DELFIC CRM outputs.  As Jodoin pointed out, the DELFIC CRM underestimates the 
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height at which larger particles stabilize within the cloud and affects the dose rate 

contours [5:117-118].  Thus, the error in these numerical fits affected the vertical 

distribution of activity within the stabilized cloud, most significantly for the largest 

particle groups, and the corresponding FDC dose rate contours. 

 Several other modeling assumptions affected the ability of the FDC to recreate 

DNA-EX dose rate contours.  The most significant of these assumptions included use of a 

single particle distribution for all cases, use of a single-source normalization constant for 

all shots, and no vertical winds.  Particle size distributions certainly varied between shots; 

therefore, adjustment to the parameters used to define the distribution would change the 

particle size groups and the contours produced.  Any change to the source normalization 

constant would have changed the dose rates calculated for each grid point and the 

associated dose rate contours.  The simplifying assumption of no vertical winds ignores 

downdrafts and updrafts that could lead, respectively, to quicker and slower fallout 

deposition than would otherwise occur. 
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V. Conclusions and Recommendations 

Conclusions 

The major accomplishments of this research are that it provides a proof of concept 

for yield estimation from inversion of dose rate contours, validates the use of ground-zero 

and high resolution mesoscale reanalysis weather wind data to recreate DNA-EX dose 

rate contours, develops a single numerical FOM to compare a series of dose rate contours 

against a reference dose rate contour, and creates a relatively simple fallout deposition 

code that accounts for time and spatially variable winds. 

The Yield Estimation / Yield Approximation (YEYA) inversion technique is 

reliable to within a factor of two with more than 90% confidence.  It is important to note 

that the dose rate inversion yield estimation technique is not practical for yield diagnosis 

immediately after a domestic nuclear event.  Application of this technique requires a very 

detailed knowledge of, among other things, dose rate contours that would not be available 

without substantial effort. 

This study determined that a combination of ground zero balloon wind data and 

reanalysis weather wind data allowed recreation of dose rate contours that more closely 

matched DNA-EX contours than previous modeling efforts.  Further, this research 

improved on the MOE and NAD analysis techniques by creating the FOM to provide a 

single numerical quantity to compare a series of predicted dose rate contours against a 

reference dose rate contour.  Finally, the similarities between yield bracketing for the 

capped and uncapped cloud scenarios indicate that the numerical fits to DELFIC used to 

create the initial stabilized clouds reasonably described the aggregate vertical distribution 
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of the 19.357 micron and larger particle groups that were studied.  The consistency in 

yield estimates between capped and uncapped clouds demonstrates that the vertical 

distribution of activity within the cloud is reasonable.  This highlights that a relatively 

minor modification to HPAC—proper integration of the DELFIC CRM—will 

dramatically improve HPAC’s predictive capability.   

Recommendations for Future Work   

There are numerous possible follow-on projects to the work conducted in this 

thesis.  Given the success of the FDC, there are several potential modifications that might 

improve the model.  Some of the major modifications include creation of refined 

numerical fits to cloud tops, cloud bottoms, and cloud diameter by particle size group 

using Jodoin’s modified DELFIC; incorporation of winds during cloud rise and prior to 

stabilization; inclusion of vertical winds; and inclusion of more detailed terrain.  

Modification of the particle size distribution to separately account for deeply buried, 

shallow buried, surface, and surface contact bursts would also be useful. 

The current dose rate contour inversion technique may be applied to study yield 

prediction capability for dose rate contours that are closed within the DNA-EX.  The 

FDC may be employed and the inversion technique repeated for DNA-EX on-site dose 

rate contours using ground zero wind data. 

The FDC may be used in its current form, or after slight input-output 

modifications, to allow study of several other nuclear forensics topics.  Two possible 

areas of research include yield estimation from integration of dose rate contours and yield 

estimation from dose rate(s) at a point(s).  The former seeks to integrate dose rate 
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contours to determine the total activity deposited and relate it to weapon yield.  The FDC 

output files can be used to create a first approximation.  In the latter, using simple 

unidirectional winds, it may be possible to relate dose rates at points downwind to the 

weapon yield and time.  For example, the H+1 hr dose rates for a 10KT burst at 25km 

and 50km directly downwind from a 10mph may be established, or the values for 10KT, 

25KT, and 50KT bursts may be compared at these locations. 

Use of Kriging to perform a statistically sound reproduction of the post-test dose 

rate contours and comparing them to DNA-EX and other dose rate reproductions may be 

useful.  Although the data is sparse, a researcher may be able to go to original historical 

sources and obtain data that would provide more resolution to the actual dose rate 

contours produced by nuclear tests. 
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Appendix A: FOM Comparison 
 

 

 

 

  

Test Yield MOEx MOEy NAD FMS FOM MOEx MOEy NAD FMS FOM MOEx MOEy NAD FMS FOM
George 5 0.110 0.807 0.807 0.107 2.712 0.659 0.949 0.222 0.636 0.281 0.659 0.947 0.223 0.635 0.283

10 0.325 0.873 0.526 0.310 0.988 0.797 0.946 0.135 0.762 0.155 0.800 0.945 0.134 0.764 0.154
15 0.387 0.899 0.459 0.371 0.778 0.852 0.938 0.107 0.807 0.120 0.854 0.938 0.106 0.808 0.118
20 0.435 0.974 0.399 0.430 0.613 0.882 0.929 0.095 0.827 0.105 0.883 0.931 0.094 0.829 0.103
25 0.460 0.970 0.376 0.454 0.563 0.898 0.917 0.093 0.830 0.102 0.896 0.922 0.091 0.833 0.100

Ess 0.5 0.451 0.824 0.417 0.411 0.685 0.295 0.959 0.549 0.291 1.032 0.277 0.899 0.577 0.268 1.157
1 0.536 0.550 0.457 0.373 0.840 0.370 0.934 0.470 0.361 0.798 0.330 0.862 0.522 0.314 0.979
2 0.611 0.436 0.491 0.341 0.951 0.415 0.917 0.429 0.400 0.695 0.410 0.741 0.472 0.358 0.857
5 0.725 0.437 0.455 0.374 0.809 0.464 0.902 0.387 0.442 0.598 0.609 0.740 0.332 0.501 0.495

10 0.804 0.443 0.428 0.400 0.718 0.497 0.895 0.361 0.470 0.541 0.687 0.755 0.281 0.562 0.390
Zucchini 15 0.090 1.000 0.834 0.090 2.774 0.861 0.925 0.108 0.804 0.122 0.861 0.924 0.109 0.804 0.122

22 0.351 0.933 0.490 0.342 0.856 0.910 0.918 0.086 0.841 0.094 0.909 0.918 0.087 0.841 0.095
28 0.385 0.887 0.463 0.367 0.792 0.935 0.906 0.080 0.852 0.087 0.934 0.906 0.080 0.851 0.087
40 0.345 0.819 0.515 0.320 0.969 0.955 0.880 0.084 0.844 0.092 0.959 0.881 0.082 0.849 0.089
60 0.291 0.714 0.587 0.261 1.287 0.964 0.853 0.095 0.826 0.105 0.965 0.747 0.158 0.728 0.186

Priscilla 32 0.037 1.000 0.928 0.037 4.796 0.843 0.702 0.234 0.621 0.304 0.842 0.701 0.235 0.620 0.306
35 0.150 1.000 0.739 0.150 1.910 0.854 0.695 0.234 0.621 0.303 0.854 0.695 0.233 0.622 0.303
37 0.208 0.978 0.658 0.207 1.460 0.858 0.691 0.235 0.620 0.305 0.859 0.691 0.234 0.621 0.304
45 0.664 0.861 0.250 0.600 0.330 0.871 0.680 0.236 0.618 0.307 0.874 0.683 0.233 0.622 0.301
60 0.831 0.789 0.191 0.680 0.236 0.884 0.664 0.242 0.611 0.316 0.883 0.665 0.241 0.611 0.315

Smoky 35 0.064 0.471 0.887 0.060 5.094 0.832 0.703 0.238 0.616 0.311 0.819 0.699 0.246 0.605 0.325
40 0.139 0.323 0.806 0.108 3.804 0.837 0.701 0.237 0.617 0.310 0.831 0.698 0.242 0.611 0.317
44 0.248 0.333 0.716 0.166 2.491 0.842 0.699 0.236 0.618 0.308 0.834 0.694 0.242 0.610 0.318
50 0.329 0.336 0.667 0.200 2.005 0.846 0.695 0.237 0.617 0.310 0.837 0.690 0.243 0.609 0.320
60 0.419 0.347 0.620 0.234 1.626 0.851 0.691 0.237 0.617 0.309 0.842 0.680 0.248 0.603 0.327

Johnie Boy 0.3 0.001 0.000 0.999 0.000 1335.585 0.225 0.830 0.646 0.215 1.493 0.238 0.824 0.630 0.227 1.422
0.5 0.001 0.000 0.999 0.000 1412.190 0.384 0.791 0.482 0.349 0.875 0.391 0.791 0.477 0.355 0.857
1 0.001 0.000 0.999 0.000 1454.227 0.593 0.707 0.355 0.476 0.549 0.607 0.707 0.347 0.485 0.530
2 0.001 0.000 0.999 0.000 1488.855 0.687 0.686 0.313 0.523 0.456 0.700 0.686 0.307 0.530 0.443
5 0.002 0.001 0.999 0.000 1126.254 0.767 0.637 0.304 0.534 0.435 0.779 0.636 0.300 0.539 0.426

FDC (Capped)HPAC FDC (Uncapped)
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Appendix B: Visual Comparisons of Historic Yields 
 

 For each test shot, graphics are shown, from left to right, for the FDC, DNA-EX, 

and HPAC dose rate contours at the historic yield. 

George 15KT yield dose rate contours.  Note that HPAC significantly 

underestimates the lateral dispersion of fallout deposition.  HPAC gets the cardinal 

direction (north) of deposition correct, but predicts movement of the cloud more to the 

west than east along the north-south running ridge. 
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ESS 1KT yield dose rate contours.  HPAC does a better job of recreating the dose 

rate contours over the first 100 km.  In both cases, neither reproduction captures the 

curvature of the contours to the east beyond 100 km. 

 

 

 

Zucchini 28KT yield dose rate contours.  HPAC again fails to model the lateral 

dispersion and deposition of activity.  The FDC provides a reasonable reproduction of the 

DNA-EX dose rate contours, including capturing the curvature taking place at 

approximately 110 km east of ground zero. 
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Priscilla 37KT yield dose rate contours.  Neither HPAC nor FDC accurately 

recreate fallout deposition beyond 100 miles.  The ground zero balloon wind data used in 

the FDC does a better job of capturing the direction of initial fallout (east-northeast) but 

underestimates the eventual movement of the radioactive cloud to the north. 

 

 

 

Smoky 44KT yield dose rate contours.  HPAC fails to capture the curvature of 

fallout deposition.  The FDC is affected by the winds at elevation and the local terrain 

near ground zero, leading to irregular contours near ground zero.  The additional 

deposition that occurs in the FDC near 160 km is due to the combination of zero vertical 

winds, a westerly wind, and a large north-south running ridgeline leading to increased 

deposition here. 
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Johnie Boy 0.5KT yield dose rate contours.  HPAC produced dose rate contours 

do not appear to account for changes to the wind at altitude.  The FDC dose rate contours 

do not extend far enough from ground zero.  However, the FDC does a reasonable job 

capturing the curvature of the dose rate contours that occurs at approximately 40 km 

north of ground zero. 
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Appendix C: Dose Rate Contour Changes As a Function of Yield 
 
George HPAC Dose Rate Contours 
 
 

 
 
 
George FDC Dose Rate Contours 
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ESS HPAC Dose Rate Contours 
 
 

 
 
 
ESS FDC Dose Rate Contours 
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Priscilla HPAC Dose Rate Contours 
 
 

 
 
 
Priscilla FDC Dose Rate Contours 
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Smoky HPAC Dose Rate Contours 
 
 

 
 
 
Smoky FDC Dose Rate Contours 
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Johnie Boy HPAC Dose Rate Contours 
 

 
 
Johnie Boy FDC Dose Rate Contours 
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Appendix D: George FOM 
 

Yield MOEx MOEy NAD FMS FOM
REL
FOM Yield MOEx MOEy NAD FMS FOM

REL
FOM

1 0.194 0.957 0.678 0.192 1.576 15.448 57 0.923 0.874 0.102 0.815 0.113 1.112
2 0.410 0.945 0.428 0.401 0.687 6.733 58 0.924 0.873 0.102 0.815 0.114 1.113
3 0.520 0.946 0.329 0.505 0.469 4.598 59 0.924 0.872 0.102 0.814 0.114 1.118
4 0.599 0.948 0.266 0.580 0.353 3.460 60 0.925 0.872 0.103 0.814 0.114 1.120
5 0.659 0.949 0.222 0.636 0.281 2.756 61 0.925 0.871 0.103 0.813 0.115 1.123
6 0.702 0.949 0.193 0.677 0.236 2.316 62 0.925 0.870 0.103 0.813 0.115 1.127
7 0.734 0.949 0.172 0.706 0.206 2.021 63 0.925 0.870 0.103 0.813 0.115 1.128
8 0.759 0.948 0.157 0.729 0.185 1.812 64 0.926 0.869 0.103 0.812 0.115 1.131
9 0.780 0.947 0.144 0.748 0.168 1.647 65 0.926 0.868 0.104 0.812 0.116 1.133

10 0.797 0.946 0.135 0.762 0.155 1.522 66 0.927 0.867 0.104 0.812 0.116 1.137
11 0.811 0.944 0.127 0.774 0.145 1.424 67 0.927 0.866 0.104 0.811 0.117 1.142
12 0.824 0.943 0.121 0.785 0.137 1.343 68 0.927 0.866 0.105 0.811 0.117 1.144
13 0.834 0.941 0.116 0.792 0.131 1.281 69 0.928 0.865 0.105 0.810 0.117 1.146
14 0.844 0.939 0.111 0.800 0.125 1.221 70 0.928 0.865 0.105 0.810 0.117 1.147
15 0.852 0.938 0.107 0.807 0.120 1.172 71 0.928 0.864 0.105 0.810 0.117 1.150
16 0.860 0.936 0.104 0.812 0.115 1.131 72 0.928 0.864 0.105 0.810 0.118 1.152
17 0.866 0.935 0.101 0.817 0.112 1.101 73 0.929 0.863 0.105 0.809 0.118 1.154
18 0.873 0.933 0.098 0.822 0.109 1.064 74 0.929 0.863 0.105 0.809 0.118 1.153
19 0.879 0.931 0.096 0.825 0.106 1.037 75 0.929 0.862 0.106 0.809 0.118 1.158
20 0.882 0.929 0.095 0.827 0.105 1.028 76 0.930 0.861 0.106 0.809 0.118 1.159
21 0.887 0.927 0.094 0.829 0.103 1.012 77 0.930 0.861 0.106 0.808 0.119 1.162
22 0.890 0.924 0.093 0.829 0.103 1.010 78 0.930 0.860 0.106 0.808 0.119 1.165
23 0.894 0.922 0.093 0.831 0.102 1.000 79 0.930 0.860 0.106 0.808 0.119 1.167
24 0.896 0.919 0.093 0.830 0.102 1.002 80 0.930 0.859 0.107 0.807 0.119 1.170
25 0.898 0.917 0.093 0.830 0.102 1.001 81 0.930 0.859 0.107 0.807 0.119 1.171
26 0.900 0.915 0.093 0.830 0.102 1.003 82 0.930 0.858 0.107 0.807 0.120 1.175
27 0.901 0.912 0.093 0.829 0.103 1.008 83 0.930 0.858 0.107 0.806 0.120 1.177
28 0.903 0.910 0.093 0.829 0.103 1.010 84 0.931 0.858 0.107 0.806 0.120 1.179
29 0.904 0.908 0.094 0.829 0.103 1.014 85 0.931 0.857 0.108 0.806 0.120 1.180
30 0.905 0.907 0.094 0.828 0.104 1.017 86 0.931 0.857 0.108 0.805 0.121 1.183
31 0.907 0.905 0.094 0.828 0.104 1.020 87 0.931 0.856 0.108 0.805 0.121 1.185
32 0.908 0.903 0.095 0.827 0.105 1.024 88 0.932 0.856 0.108 0.805 0.121 1.185
33 0.909 0.901 0.095 0.827 0.105 1.026 89 0.932 0.855 0.108 0.805 0.121 1.187
34 0.911 0.899 0.095 0.827 0.105 1.027 90 0.932 0.855 0.108 0.805 0.121 1.189
35 0.912 0.898 0.095 0.826 0.105 1.032 91 0.932 0.854 0.109 0.804 0.122 1.194
36 0.912 0.897 0.096 0.826 0.106 1.036 92 0.932 0.853 0.109 0.804 0.122 1.197
37 0.913 0.895 0.096 0.825 0.106 1.042 93 0.932 0.853 0.109 0.803 0.122 1.200
38 0.914 0.894 0.096 0.824 0.107 1.045 94 0.932 0.853 0.109 0.803 0.123 1.202
39 0.915 0.892 0.097 0.823 0.107 1.051 95 0.932 0.852 0.109 0.803 0.123 1.203
40 0.915 0.891 0.097 0.823 0.108 1.056 96 0.932 0.852 0.110 0.802 0.123 1.208
41 0.915 0.890 0.098 0.822 0.108 1.060 97 0.933 0.852 0.110 0.802 0.123 1.207
42 0.916 0.889 0.098 0.822 0.109 1.064 98 0.933 0.851 0.110 0.802 0.123 1.207
43 0.917 0.887 0.098 0.821 0.109 1.070 99 0.933 0.851 0.110 0.802 0.123 1.208
44 0.917 0.886 0.099 0.821 0.109 1.071 100 0.933 0.850 0.110 0.802 0.124 1.212
45 0.917 0.885 0.099 0.820 0.110 1.078 101 0.933 0.850 0.110 0.801 0.124 1.213
46 0.918 0.884 0.099 0.819 0.110 1.083 102 0.933 0.850 0.110 0.801 0.124 1.215
47 0.919 0.883 0.099 0.819 0.110 1.082 103 0.933 0.849 0.111 0.801 0.124 1.218
48 0.920 0.882 0.099 0.819 0.110 1.082 104 0.933 0.849 0.111 0.800 0.125 1.223
49 0.921 0.881 0.100 0.819 0.111 1.086 105 0.933 0.848 0.111 0.800 0.125 1.224
50 0.921 0.880 0.100 0.818 0.111 1.088 106 0.934 0.848 0.111 0.800 0.125 1.226
51 0.922 0.879 0.100 0.818 0.111 1.092 107 0.934 0.848 0.111 0.799 0.125 1.228
52 0.922 0.878 0.101 0.817 0.112 1.096 108 0.934 0.847 0.112 0.799 0.125 1.230
53 0.922 0.877 0.101 0.817 0.112 1.099 109 0.934 0.847 0.112 0.799 0.126 1.233
54 0.922 0.876 0.101 0.816 0.113 1.104 110 0.934 0.847 0.112 0.799 0.126 1.233
55 0.923 0.876 0.101 0.816 0.113 1.106 111 0.934 0.846 0.112 0.799 0.126 1.235
56 0.923 0.875 0.102 0.815 0.113 1.111 112 0.934 0.846 0.112 0.798 0.126 1.237   



  

112  

Appendix E: ESS FOM 
 

Yield MOEx MOEy NAD FMS FOM
REL
FOM Yield MOEx MOEy NAD FMS FOM

REL
FOM

0.1 0.000 NaN 1.000 0.000 NaN 5.1 0.465 0.902 0.387 0.442 0.597 1.204
0.2 0.000 NaN 1.000 0.000 NaN 5.2 0.466 0.902 0.386 0.443 0.595 1.199
0.3 0.167 0.982 0.714 0.167 1.763 3.553 5.3 0.467 0.902 0.385 0.444 0.593 1.195
0.4 0.244 0.975 0.610 0.242 1.253 2.525 5.4 0.467 0.902 0.385 0.444 0.593 1.195
0.5 0.295 0.959 0.549 0.291 1.032 2.079 5.5 0.469 0.901 0.384 0.446 0.590 1.189
0.6 0.322 0.950 0.519 0.317 0.938 1.890 5.6 0.470 0.901 0.382 0.447 0.587 1.184
0.7 0.339 0.946 0.501 0.333 0.884 1.782 5.7 0.472 0.901 0.381 0.449 0.584 1.176
0.8 0.352 0.941 0.488 0.344 0.848 1.709 5.8 0.473 0.901 0.380 0.449 0.582 1.174
0.9 0.363 0.938 0.477 0.354 0.818 1.649 5.9 0.473 0.901 0.380 0.450 0.582 1.172
1 0.370 0.934 0.470 0.361 0.798 1.609 6 0.474 0.901 0.379 0.450 0.580 1.169

1.1 0.377 0.931 0.464 0.366 0.783 1.578 6.1 0.475 0.901 0.378 0.451 0.579 1.166
1.2 0.384 0.930 0.457 0.373 0.765 1.542 6.2 0.475 0.901 0.378 0.452 0.577 1.164
1.3 0.388 0.926 0.453 0.376 0.756 1.523 6.3 0.476 0.900 0.377 0.452 0.576 1.160
1.4 0.393 0.925 0.448 0.381 0.743 1.498 6.4 0.477 0.900 0.377 0.453 0.575 1.158
1.5 0.398 0.923 0.444 0.385 0.733 1.477 6.5 0.478 0.899 0.376 0.454 0.573 1.155
1.6 0.402 0.921 0.440 0.389 0.724 1.458 6.6 0.478 0.899 0.376 0.454 0.573 1.154
1.7 0.405 0.920 0.438 0.391 0.717 1.445 6.7 0.479 0.899 0.375 0.455 0.570 1.150
1.8 0.409 0.918 0.434 0.395 0.708 1.428 6.8 0.480 0.899 0.374 0.455 0.570 1.149
1.9 0.412 0.918 0.432 0.397 0.703 1.416 6.9 0.480 0.898 0.374 0.456 0.569 1.147
2 0.415 0.917 0.429 0.400 0.695 1.401 7 0.480 0.898 0.374 0.456 0.569 1.147

2.1 0.418 0.916 0.426 0.402 0.689 1.389 7.1 0.481 0.898 0.373 0.456 0.568 1.145
2.2 0.420 0.915 0.424 0.404 0.684 1.379 7.2 0.482 0.898 0.373 0.457 0.567 1.143
2.3 0.422 0.914 0.422 0.406 0.680 1.370 7.3 0.483 0.898 0.372 0.458 0.565 1.139
2.4 0.425 0.913 0.420 0.409 0.674 1.358 7.4 0.484 0.898 0.371 0.458 0.564 1.136
2.5 0.428 0.913 0.417 0.411 0.668 1.346 7.5 0.484 0.898 0.371 0.459 0.563 1.134
2.6 0.430 0.912 0.416 0.413 0.664 1.338 7.6 0.485 0.898 0.371 0.459 0.562 1.132
2.7 0.432 0.912 0.414 0.414 0.660 1.330 7.7 0.485 0.898 0.370 0.460 0.561 1.130
2.8 0.433 0.910 0.413 0.416 0.657 1.324 7.8 0.485 0.898 0.370 0.460 0.560 1.129
2.9 0.435 0.910 0.411 0.417 0.654 1.318 7.9 0.486 0.898 0.369 0.461 0.559 1.126
3 0.438 0.910 0.409 0.419 0.648 1.307 8 0.487 0.898 0.368 0.462 0.557 1.122

3.1 0.440 0.910 0.407 0.421 0.643 1.297 8.1 0.487 0.898 0.368 0.462 0.556 1.121
3.2 0.441 0.909 0.406 0.423 0.641 1.291 8.2 0.488 0.898 0.368 0.462 0.556 1.120
3.3 0.443 0.909 0.405 0.424 0.638 1.286 8.3 0.488 0.898 0.367 0.463 0.555 1.118
3.4 0.445 0.908 0.403 0.425 0.634 1.278 8.4 0.489 0.898 0.367 0.463 0.553 1.115
3.5 0.446 0.908 0.402 0.427 0.631 1.272 8.5 0.490 0.897 0.366 0.464 0.553 1.114
3.6 0.447 0.907 0.401 0.428 0.630 1.269 8.6 0.490 0.897 0.366 0.464 0.551 1.111
3.7 0.449 0.906 0.400 0.429 0.627 1.265 8.7 0.491 0.897 0.365 0.465 0.551 1.110
3.8 0.450 0.906 0.399 0.430 0.625 1.259 8.8 0.491 0.897 0.365 0.465 0.550 1.108
3.9 0.452 0.906 0.397 0.432 0.621 1.251 8.9 0.492 0.897 0.364 0.466 0.548 1.105
4 0.452 0.905 0.397 0.432 0.620 1.249 9 0.493 0.897 0.364 0.466 0.547 1.103

4.1 0.454 0.905 0.395 0.433 0.616 1.242 9.1 0.493 0.897 0.364 0.467 0.547 1.103
4.2 0.456 0.905 0.394 0.435 0.613 1.236 9.2 0.493 0.897 0.364 0.467 0.547 1.102
4.3 0.457 0.904 0.393 0.436 0.611 1.232 9.3 0.494 0.897 0.363 0.467 0.546 1.100
4.4 0.458 0.904 0.392 0.437 0.609 1.226 9.4 0.494 0.897 0.363 0.468 0.545 1.098
4.5 0.459 0.904 0.391 0.438 0.607 1.223 9.5 0.495 0.897 0.362 0.468 0.544 1.097
4.6 0.460 0.903 0.390 0.439 0.605 1.219 9.6 0.495 0.896 0.362 0.468 0.544 1.096
4.7 0.461 0.903 0.390 0.439 0.604 1.217 9.7 0.496 0.897 0.362 0.469 0.543 1.094
4.8 0.462 0.903 0.389 0.440 0.601 1.212 9.8 0.496 0.896 0.362 0.469 0.542 1.093
4.9 0.463 0.902 0.388 0.441 0.600 1.209 9.9 0.496 0.896 0.361 0.469 0.542 1.092
5 0.464 0.902 0.387 0.442 0.598 1.204 10 0.497 0.895 0.361 0.470 0.541 1.090  
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Yield MOEx MOEy NAD FMS FOM
REL
FOM Yield MOEx MOEy NAD FMS FOM

REL
FOM

10.1 0.497 0.895 0.360 0.470 0.540 1.089 15.1 0.514 0.893 0.347 0.484 0.513 1.033
10.2 0.498 0.895 0.360 0.471 0.539 1.086 15.2 0.514 0.893 0.347 0.484 0.513 1.033
10.3 0.499 0.895 0.359 0.471 0.538 1.084 15.3 0.515 0.893 0.347 0.485 0.512 1.032
10.4 0.499 0.895 0.359 0.472 0.537 1.082 15.4 0.515 0.892 0.347 0.485 0.512 1.032
10.5 0.500 0.895 0.359 0.472 0.536 1.081 15.5 0.515 0.892 0.347 0.485 0.512 1.032
10.6 0.500 0.895 0.358 0.472 0.536 1.079 15.6 0.516 0.893 0.346 0.485 0.511 1.029
10.7 0.500 0.895 0.358 0.473 0.535 1.079 15.7 0.516 0.892 0.346 0.486 0.510 1.028
10.8 0.500 0.895 0.358 0.473 0.535 1.078 15.8 0.516 0.892 0.346 0.486 0.510 1.028
10.9 0.501 0.895 0.358 0.473 0.535 1.078 15.9 0.517 0.892 0.346 0.486 0.509 1.026
11 0.501 0.895 0.358 0.473 0.534 1.076 16 0.517 0.892 0.346 0.486 0.509 1.026

11.1 0.502 0.895 0.357 0.474 0.533 1.074 16.1 0.517 0.892 0.346 0.486 0.509 1.026
11.2 0.502 0.895 0.357 0.474 0.532 1.072 16.2 0.517 0.892 0.345 0.487 0.508 1.025
11.3 0.503 0.895 0.356 0.475 0.531 1.070 16.3 0.517 0.892 0.345 0.487 0.508 1.024
11.4 0.503 0.895 0.356 0.475 0.530 1.068 16.4 0.518 0.892 0.345 0.487 0.507 1.023
11.5 0.503 0.895 0.356 0.475 0.530 1.067 16.5 0.518 0.892 0.345 0.487 0.507 1.023
11.6 0.504 0.895 0.355 0.476 0.529 1.066 16.6 0.518 0.892 0.345 0.487 0.507 1.023
11.7 0.504 0.895 0.355 0.476 0.529 1.066 16.7 0.518 0.892 0.345 0.487 0.507 1.022
11.8 0.504 0.895 0.355 0.476 0.528 1.065 16.8 0.519 0.892 0.344 0.488 0.506 1.020
11.9 0.505 0.895 0.355 0.476 0.528 1.063 16.9 0.519 0.892 0.344 0.488 0.506 1.019
12 0.505 0.895 0.354 0.477 0.527 1.063 17 0.519 0.892 0.344 0.488 0.506 1.020

12.1 0.506 0.895 0.354 0.477 0.526 1.061 17.1 0.519 0.892 0.344 0.488 0.505 1.019
12.2 0.506 0.895 0.354 0.477 0.526 1.060 17.2 0.519 0.892 0.344 0.489 0.505 1.017
12.3 0.506 0.895 0.354 0.478 0.526 1.059 17.3 0.520 0.892 0.343 0.489 0.504 1.016
12.4 0.506 0.895 0.353 0.478 0.525 1.059 17.4 0.520 0.892 0.343 0.489 0.504 1.015
12.5 0.506 0.894 0.353 0.478 0.525 1.059 17.5 0.520 0.892 0.343 0.489 0.504 1.015
12.6 0.507 0.894 0.353 0.478 0.524 1.057 17.6 0.520 0.891 0.343 0.489 0.504 1.015
12.7 0.507 0.894 0.353 0.478 0.524 1.057 17.7 0.521 0.892 0.342 0.490 0.503 1.013
12.8 0.507 0.894 0.353 0.479 0.523 1.055 17.8 0.521 0.892 0.342 0.490 0.502 1.013
12.9 0.508 0.895 0.352 0.479 0.523 1.054 17.9 0.521 0.891 0.342 0.490 0.502 1.011
13 0.508 0.895 0.352 0.479 0.522 1.052 18 0.521 0.891 0.342 0.490 0.502 1.011

13.1 0.509 0.895 0.351 0.480 0.521 1.050 18.1 0.522 0.891 0.342 0.491 0.501 1.010
13.2 0.509 0.895 0.351 0.480 0.521 1.050 18.2 0.522 0.891 0.341 0.491 0.500 1.008
13.3 0.509 0.895 0.351 0.480 0.521 1.049 18.3 0.522 0.891 0.341 0.491 0.500 1.008
13.4 0.509 0.894 0.351 0.480 0.520 1.048 18.4 0.522 0.891 0.341 0.491 0.500 1.008
13.5 0.510 0.894 0.351 0.481 0.519 1.046 18.5 0.523 0.891 0.341 0.491 0.500 1.008
13.6 0.510 0.894 0.350 0.481 0.519 1.046 18.6 0.523 0.891 0.341 0.491 0.500 1.007
13.7 0.511 0.894 0.350 0.481 0.518 1.045 18.7 0.523 0.891 0.341 0.492 0.499 1.006
13.8 0.511 0.894 0.350 0.481 0.518 1.044 18.8 0.523 0.891 0.341 0.492 0.499 1.005
13.9 0.511 0.893 0.350 0.481 0.518 1.044 18.9 0.524 0.891 0.340 0.492 0.498 1.004
14 0.511 0.893 0.350 0.482 0.518 1.044 19 0.524 0.891 0.340 0.492 0.498 1.003

14.1 0.511 0.893 0.350 0.482 0.518 1.044 19.1 0.524 0.891 0.340 0.492 0.498 1.003
14.2 0.511 0.893 0.350 0.482 0.518 1.043 19.2 0.524 0.891 0.340 0.493 0.498 1.003
14.3 0.511 0.893 0.350 0.482 0.517 1.043 19.3 0.524 0.891 0.340 0.493 0.498 1.003
14.4 0.512 0.893 0.349 0.482 0.517 1.042 19.4 0.524 0.891 0.340 0.493 0.497 1.002
14.5 0.512 0.893 0.349 0.482 0.516 1.041 19.5 0.524 0.891 0.340 0.493 0.497 1.001
14.6 0.512 0.893 0.349 0.483 0.516 1.040 19.6 0.524 0.891 0.340 0.493 0.497 1.001
14.7 0.512 0.893 0.349 0.483 0.516 1.040 19.7 0.525 0.891 0.340 0.493 0.497 1.001
14.8 0.513 0.893 0.349 0.483 0.515 1.038 19.8 0.525 0.891 0.339 0.493 0.496 1.000
14.9 0.513 0.893 0.348 0.483 0.514 1.037 19.9 0.525 0.891 0.339 0.493 0.496 1.000
15 0.514 0.893 0.348 0.484 0.513 1.035 20 0.525 0.891 0.339 0.493 0.496 1.000   
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Appendix F: Zucchini FOM 
 

Yield MOEx MOEy NAD FMS FOM
REL
FOM Yield MOEx MOEy NAD FMS FOM

REL
FOM

1 0.288 0.970 0.556 0.285 1.052 12.300 57 0.963 0.855 0.095 0.827 0.104 1.218
2 0.476 0.935 0.370 0.460 0.554 6.482 58 0.963 0.854 0.095 0.827 0.104 1.221
3 0.544 0.920 0.317 0.519 0.448 5.233 59 0.963 0.853 0.095 0.826 0.105 1.226
4 0.595 0.918 0.278 0.565 0.376 4.393 60 0.964 0.853 0.095 0.826 0.105 1.227
5 0.644 0.919 0.243 0.610 0.315 3.686 61 0.964 0.852 0.096 0.825 0.106 1.234
6 0.688 0.921 0.212 0.650 0.267 3.118 62 0.964 0.851 0.096 0.825 0.106 1.237
7 0.724 0.922 0.189 0.682 0.231 2.703 63 0.965 0.850 0.096 0.824 0.107 1.245
8 0.752 0.923 0.171 0.708 0.205 2.400 64 0.965 0.849 0.097 0.824 0.107 1.249
9 0.777 0.924 0.156 0.730 0.184 2.154 65 0.965 0.848 0.097 0.823 0.107 1.255
10 0.796 0.924 0.145 0.747 0.169 1.976 66 0.965 0.847 0.098 0.822 0.108 1.261
11 0.813 0.925 0.134 0.763 0.155 1.811 67 0.967 0.847 0.097 0.823 0.107 1.255
12 0.827 0.925 0.127 0.775 0.145 1.691 68 0.968 0.846 0.097 0.823 0.107 1.252
13 0.839 0.925 0.120 0.785 0.137 1.596 69 0.968 0.846 0.097 0.823 0.107 1.255
14 0.850 0.925 0.114 0.795 0.128 1.502 70 0.968 0.845 0.098 0.822 0.108 1.260
15 0.861 0.925 0.108 0.804 0.122 1.421 71 0.968 0.844 0.098 0.822 0.108 1.265
16 0.870 0.924 0.104 0.812 0.116 1.352 72 0.968 0.844 0.098 0.821 0.109 1.270
17 0.880 0.924 0.099 0.820 0.109 1.279 73 0.969 0.843 0.099 0.820 0.109 1.276
18 0.886 0.923 0.096 0.824 0.106 1.244 74 0.969 0.843 0.099 0.820 0.109 1.278
19 0.892 0.921 0.094 0.828 0.104 1.210 75 0.969 0.842 0.099 0.820 0.109 1.278
20 0.899 0.921 0.091 0.834 0.100 1.165 76 0.969 0.842 0.099 0.820 0.110 1.283
21 0.904 0.919 0.089 0.837 0.097 1.136 77 0.969 0.841 0.099 0.819 0.110 1.284
22 0.910 0.918 0.086 0.841 0.094 1.104 78 0.969 0.841 0.099 0.819 0.110 1.288
23 0.914 0.916 0.085 0.843 0.093 1.085 79 0.970 0.841 0.099 0.819 0.110 1.287
24 0.919 0.914 0.083 0.846 0.091 1.065 80 0.970 0.840 0.099 0.819 0.110 1.288
25 0.925 0.912 0.082 0.849 0.089 1.039 81 0.970 0.840 0.100 0.819 0.110 1.289
26 0.929 0.911 0.080 0.851 0.087 1.021 82 0.970 0.840 0.100 0.819 0.111 1.292
27 0.932 0.908 0.080 0.852 0.087 1.019 83 0.970 0.839 0.100 0.818 0.111 1.297
28 0.935 0.906 0.080 0.852 0.087 1.013 84 0.970 0.839 0.100 0.818 0.111 1.299
29 0.939 0.905 0.079 0.854 0.086 1.000 85 0.970 0.838 0.101 0.817 0.112 1.306
30 0.941 0.901 0.080 0.853 0.086 1.010 86 0.970 0.837 0.101 0.817 0.112 1.310
31 0.943 0.900 0.079 0.853 0.086 1.006 87 0.971 0.837 0.101 0.816 0.112 1.313
32 0.944 0.896 0.081 0.851 0.088 1.025 88 0.971 0.836 0.101 0.816 0.112 1.315
33 0.945 0.894 0.081 0.850 0.088 1.032 89 0.971 0.836 0.102 0.816 0.113 1.319
34 0.948 0.894 0.080 0.852 0.087 1.017 90 0.971 0.835 0.102 0.815 0.113 1.322
35 0.950 0.891 0.080 0.851 0.087 1.023 91 0.972 0.835 0.102 0.815 0.113 1.323
36 0.952 0.888 0.081 0.850 0.088 1.033 92 0.972 0.835 0.102 0.815 0.113 1.326
37 0.953 0.886 0.082 0.849 0.089 1.040 93 0.972 0.834 0.102 0.815 0.113 1.326
38 0.953 0.884 0.082 0.848 0.090 1.050 94 0.972 0.834 0.102 0.814 0.114 1.328
39 0.954 0.882 0.084 0.846 0.091 1.065 95 0.972 0.833 0.102 0.814 0.114 1.330
40 0.955 0.880 0.084 0.844 0.092 1.076 96 0.972 0.833 0.103 0.814 0.114 1.332
41 0.955 0.877 0.085 0.843 0.093 1.090 97 0.972 0.833 0.103 0.814 0.114 1.335
42 0.956 0.875 0.086 0.841 0.094 1.104 98 0.972 0.832 0.103 0.813 0.115 1.339
43 0.958 0.874 0.086 0.841 0.094 1.103 99 0.973 0.832 0.103 0.813 0.115 1.342
44 0.958 0.871 0.087 0.840 0.095 1.115 100 0.974 0.832 0.103 0.814 0.114 1.333
45 0.958 0.870 0.088 0.838 0.096 1.126 101 0.975 0.832 0.103 0.814 0.114 1.331
46 0.959 0.869 0.088 0.838 0.097 1.133 102 0.975 0.831 0.103 0.814 0.114 1.332
47 0.959 0.866 0.090 0.835 0.098 1.151 103 0.975 0.831 0.103 0.814 0.114 1.334
48 0.960 0.865 0.090 0.834 0.099 1.158 104 0.976 0.830 0.103 0.813 0.114 1.337
49 0.960 0.864 0.091 0.834 0.099 1.163 105 0.976 0.830 0.103 0.813 0.115 1.340
50 0.960 0.863 0.091 0.833 0.100 1.171 106 0.976 0.830 0.103 0.813 0.115 1.341
51 0.961 0.862 0.092 0.832 0.101 1.176 107 0.976 0.830 0.103 0.813 0.115 1.340
52 0.961 0.860 0.092 0.831 0.101 1.185 108 0.976 0.829 0.103 0.813 0.115 1.342
53 0.962 0.858 0.093 0.830 0.102 1.198 109 0.976 0.829 0.103 0.813 0.115 1.342
54 0.962 0.857 0.094 0.829 0.103 1.205 110 0.976 0.829 0.103 0.813 0.115 1.341
55 0.962 0.856 0.094 0.828 0.104 1.212 111 0.977 0.829 0.103 0.813 0.115 1.341
56 0.963 0.855 0.094 0.828 0.104 1.215 112 0.977 0.829 0.103 0.813 0.115 1.344
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Appendix G: Priscilla FOM 

Yield MOEx MOEy NAD FMS FOM
REL
FOM Yield MOEx MOEy NAD FMS FOM

REL
FOM

1 0.106 0.497 0.825 0.096 3.590 11.841 57 0.882 0.666 0.241 0.611 0.315 1.038
2 0.216 0.597 0.683 0.189 1.901 6.270 58 0.882 0.666 0.241 0.611 0.315 1.039
3 0.304 0.654 0.585 0.261 1.314 4.335 59 0.883 0.665 0.241 0.611 0.315 1.040
4 0.387 0.695 0.503 0.331 0.971 3.202 60 0.884 0.664 0.242 0.611 0.316 1.041
5 0.439 0.715 0.456 0.373 0.815 2.689 61 0.885 0.663 0.242 0.610 0.316 1.042
6 0.476 0.727 0.425 0.404 0.722 2.382 62 0.886 0.662 0.242 0.610 0.316 1.043
7 0.508 0.736 0.399 0.430 0.652 2.152 63 0.886 0.662 0.242 0.610 0.317 1.044
8 0.543 0.745 0.372 0.458 0.585 1.930 64 0.886 0.661 0.243 0.609 0.317 1.046
9 0.580 0.755 0.344 0.489 0.519 1.712 65 0.887 0.661 0.243 0.609 0.317 1.047

10 0.604 0.748 0.332 0.502 0.494 1.628 66 0.888 0.660 0.243 0.609 0.317 1.046
11 0.615 0.735 0.330 0.503 0.491 1.620 67 0.888 0.659 0.243 0.609 0.318 1.048
12 0.624 0.726 0.329 0.505 0.488 1.611 68 0.890 0.659 0.243 0.609 0.317 1.045
13 0.632 0.719 0.327 0.507 0.486 1.602 69 0.891 0.658 0.243 0.609 0.317 1.045
14 0.639 0.712 0.326 0.508 0.484 1.596 70 0.892 0.658 0.243 0.609 0.317 1.047
15 0.644 0.707 0.326 0.508 0.484 1.596 71 0.892 0.657 0.243 0.609 0.318 1.048
16 0.648 0.701 0.327 0.508 0.485 1.599 72 0.892 0.656 0.244 0.608 0.318 1.050
17 0.653 0.697 0.326 0.508 0.483 1.594 73 0.893 0.655 0.244 0.608 0.319 1.052
18 0.656 0.693 0.326 0.508 0.484 1.595 74 0.893 0.655 0.244 0.607 0.320 1.054
19 0.662 0.691 0.324 0.511 0.479 1.579 75 0.894 0.654 0.244 0.607 0.320 1.054
20 0.668 0.688 0.322 0.513 0.475 1.568 76 0.895 0.654 0.245 0.607 0.320 1.055
21 0.675 0.688 0.319 0.517 0.468 1.543 77 0.896 0.653 0.245 0.607 0.320 1.054
22 0.682 0.687 0.316 0.520 0.461 1.521 78 0.896 0.653 0.245 0.607 0.320 1.057
23 0.691 0.687 0.311 0.525 0.452 1.490 79 0.896 0.652 0.245 0.606 0.321 1.057
24 0.703 0.687 0.305 0.532 0.439 1.448 80 0.896 0.651 0.245 0.606 0.321 1.060
25 0.732 0.694 0.287 0.554 0.403 1.330 81 0.897 0.651 0.246 0.606 0.322 1.061
26 0.760 0.700 0.271 0.573 0.372 1.227 82 0.897 0.650 0.246 0.605 0.322 1.063
27 0.784 0.704 0.258 0.590 0.347 1.145 83 0.897 0.650 0.246 0.605 0.323 1.064
28 0.805 0.708 0.247 0.604 0.327 1.077 84 0.898 0.649 0.247 0.604 0.323 1.067
29 0.820 0.708 0.240 0.613 0.315 1.040 85 0.898 0.648 0.247 0.604 0.324 1.068
30 0.830 0.707 0.236 0.618 0.309 1.018 86 0.899 0.648 0.247 0.604 0.324 1.069
31 0.837 0.705 0.235 0.620 0.306 1.008 87 0.899 0.647 0.247 0.603 0.325 1.070
32 0.843 0.702 0.234 0.621 0.304 1.004 88 0.900 0.647 0.247 0.603 0.324 1.069
33 0.848 0.700 0.234 0.621 0.303 1.000 89 0.900 0.646 0.248 0.603 0.325 1.071
34 0.851 0.697 0.234 0.621 0.304 1.001 90 0.900 0.646 0.248 0.603 0.325 1.073
35 0.854 0.695 0.234 0.621 0.303 1.001 91 0.901 0.645 0.248 0.602 0.326 1.075
36 0.856 0.693 0.234 0.621 0.303 1.000 92 0.901 0.644 0.249 0.602 0.326 1.077
37 0.858 0.691 0.235 0.620 0.305 1.005 93 0.901 0.644 0.249 0.601 0.327 1.078
38 0.860 0.689 0.235 0.620 0.305 1.006 94 0.901 0.644 0.249 0.601 0.327 1.079
39 0.862 0.688 0.235 0.620 0.305 1.006 95 0.901 0.643 0.249 0.601 0.328 1.081
40 0.863 0.687 0.235 0.620 0.305 1.006 96 0.902 0.643 0.250 0.600 0.328 1.082
41 0.865 0.686 0.235 0.620 0.305 1.006 97 0.902 0.642 0.250 0.600 0.328 1.082
42 0.866 0.684 0.236 0.619 0.306 1.010 98 0.902 0.642 0.250 0.600 0.329 1.084
43 0.869 0.683 0.235 0.619 0.305 1.007 99 0.902 0.642 0.250 0.600 0.329 1.085
44 0.870 0.682 0.235 0.619 0.305 1.007 100 0.902 0.641 0.250 0.600 0.329 1.086
45 0.871 0.680 0.236 0.618 0.307 1.012 101 0.904 0.641 0.250 0.600 0.329 1.085
46 0.872 0.679 0.237 0.617 0.308 1.015 102 0.905 0.640 0.250 0.600 0.329 1.084
47 0.873 0.677 0.237 0.616 0.309 1.019 103 0.905 0.640 0.250 0.600 0.329 1.084
48 0.874 0.676 0.238 0.616 0.309 1.019 104 0.905 0.640 0.250 0.600 0.329 1.085
49 0.875 0.675 0.238 0.616 0.309 1.020 105 0.905 0.639 0.251 0.599 0.329 1.086
50 0.876 0.674 0.238 0.616 0.310 1.021 106 0.906 0.639 0.251 0.599 0.329 1.087
51 0.877 0.673 0.238 0.615 0.310 1.023 107 0.906 0.639 0.251 0.599 0.330 1.088
52 0.878 0.671 0.239 0.614 0.312 1.029 108 0.906 0.638 0.251 0.599 0.330 1.089
53 0.878 0.670 0.240 0.613 0.312 1.031 109 0.906 0.638 0.251 0.598 0.331 1.091
54 0.879 0.669 0.240 0.612 0.313 1.034 110 0.906 0.638 0.251 0.598 0.331 1.090
55 0.880 0.668 0.240 0.613 0.313 1.033 111 0.907 0.637 0.251 0.598 0.331 1.091
56 0.881 0.667 0.241 0.612 0.314 1.036 112 0.907 0.637 0.252 0.598 0.331 1.093
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Appendix H: Smoky FOM 
 

Yield MOEx MOEy NAD FMS FOM
REL
FOM Yield MOEx MOEy NAD FMS FOM

REL
FOM

1 0.045 0.355 0.919 0.042 7.240 23.648 57 0.850 0.692 0.237 0.617 0.309 1.010
2 0.119 0.401 0.817 0.101 3.739 12.213 58 0.850 0.692 0.237 0.617 0.309 1.010
3 0.290 0.590 0.611 0.242 1.475 4.819 59 0.850 0.691 0.237 0.616 0.309 1.011
4 0.432 0.669 0.475 0.356 0.883 2.883 60 0.851 0.691 0.237 0.617 0.309 1.009
5 0.563 0.719 0.369 0.461 0.579 1.893 61 0.852 0.691 0.237 0.617 0.309 1.009
6 0.630 0.737 0.321 0.514 0.471 1.540 62 0.852 0.691 0.237 0.617 0.309 1.009
7 0.672 0.744 0.294 0.545 0.416 1.360 63 0.853 0.690 0.237 0.617 0.309 1.009
8 0.703 0.747 0.276 0.568 0.380 1.242 64 0.854 0.690 0.237 0.617 0.308 1.007
9 0.724 0.748 0.264 0.582 0.359 1.172 65 0.855 0.690 0.236 0.618 0.308 1.005
10 0.743 0.748 0.255 0.594 0.342 1.116 66 0.855 0.690 0.236 0.618 0.308 1.005
11 0.755 0.747 0.249 0.601 0.332 1.086 67 0.856 0.689 0.237 0.617 0.308 1.007
12 0.766 0.744 0.245 0.606 0.325 1.061 68 0.856 0.689 0.237 0.617 0.308 1.007
13 0.774 0.743 0.242 0.611 0.319 1.041 69 0.856 0.689 0.237 0.617 0.308 1.007
14 0.781 0.739 0.241 0.612 0.317 1.036 70 0.856 0.689 0.237 0.617 0.308 1.007
15 0.787 0.737 0.239 0.614 0.314 1.026 71 0.857 0.688 0.237 0.617 0.308 1.006
16 0.793 0.735 0.237 0.617 0.310 1.014 72 0.857 0.688 0.236 0.618 0.308 1.005
17 0.798 0.733 0.236 0.618 0.308 1.007 73 0.857 0.688 0.237 0.617 0.308 1.006
18 0.802 0.729 0.236 0.618 0.309 1.008 74 0.857 0.688 0.237 0.617 0.309 1.008
19 0.806 0.727 0.235 0.619 0.308 1.004 75 0.858 0.687 0.237 0.617 0.309 1.008
20 0.810 0.725 0.235 0.620 0.306 1.001 76 0.858 0.687 0.237 0.617 0.308 1.007
21 0.812 0.724 0.235 0.620 0.306 1.000 77 0.858 0.687 0.237 0.617 0.309 1.008
22 0.814 0.722 0.235 0.619 0.307 1.002 78 0.859 0.687 0.237 0.617 0.309 1.009
23 0.816 0.720 0.235 0.619 0.307 1.003 79 0.859 0.686 0.237 0.616 0.309 1.010
24 0.818 0.718 0.236 0.619 0.308 1.005 80 0.859 0.686 0.237 0.616 0.309 1.010
25 0.819 0.716 0.236 0.618 0.308 1.006 81 0.859 0.685 0.238 0.616 0.310 1.011
26 0.821 0.714 0.236 0.618 0.308 1.006 82 0.860 0.685 0.238 0.616 0.310 1.011
27 0.823 0.713 0.236 0.619 0.307 1.004 83 0.860 0.685 0.238 0.616 0.310 1.012
28 0.824 0.712 0.236 0.618 0.308 1.006 84 0.860 0.684 0.238 0.615 0.310 1.014
29 0.825 0.710 0.237 0.617 0.309 1.009 85 0.860 0.683 0.238 0.615 0.311 1.014
30 0.827 0.709 0.237 0.617 0.309 1.011 86 0.861 0.683 0.238 0.615 0.311 1.015
31 0.828 0.707 0.237 0.617 0.310 1.012 87 0.861 0.683 0.238 0.615 0.311 1.016
32 0.829 0.706 0.237 0.617 0.310 1.012 88 0.861 0.682 0.239 0.615 0.311 1.017
33 0.830 0.705 0.238 0.616 0.311 1.014 89 0.861 0.682 0.239 0.615 0.311 1.017
34 0.831 0.704 0.238 0.616 0.311 1.016 90 0.862 0.682 0.239 0.614 0.312 1.018
35 0.832 0.703 0.238 0.616 0.311 1.016 91 0.862 0.681 0.239 0.614 0.312 1.019
36 0.834 0.703 0.237 0.616 0.310 1.013 92 0.862 0.681 0.239 0.614 0.312 1.020
37 0.835 0.702 0.237 0.617 0.310 1.012 93 0.862 0.681 0.239 0.614 0.312 1.019
38 0.835 0.702 0.237 0.616 0.310 1.013 94 0.863 0.681 0.239 0.614 0.312 1.019
39 0.836 0.701 0.237 0.616 0.310 1.013 95 0.863 0.680 0.239 0.614 0.312 1.020
40 0.837 0.701 0.237 0.617 0.310 1.011 96 0.863 0.680 0.239 0.614 0.312 1.020
41 0.839 0.700 0.237 0.617 0.309 1.009 97 0.864 0.680 0.239 0.614 0.312 1.019
42 0.840 0.700 0.236 0.618 0.308 1.007 98 0.864 0.680 0.239 0.614 0.312 1.020
43 0.841 0.699 0.236 0.618 0.308 1.007 99 0.864 0.679 0.239 0.614 0.312 1.020
44 0.842 0.699 0.236 0.618 0.308 1.006 100 0.864 0.679 0.240 0.613 0.313 1.022
45 0.842 0.698 0.236 0.618 0.308 1.007 101 0.864 0.678 0.240 0.613 0.313 1.023
46 0.843 0.698 0.237 0.617 0.308 1.008 102 0.865 0.678 0.240 0.613 0.313 1.023
47 0.844 0.697 0.237 0.617 0.309 1.008 103 0.865 0.678 0.240 0.613 0.313 1.024
48 0.845 0.697 0.237 0.617 0.308 1.008 104 0.865 0.678 0.240 0.613 0.313 1.023
49 0.845 0.696 0.237 0.617 0.309 1.010 105 0.865 0.678 0.240 0.613 0.314 1.024
50 0.846 0.695 0.237 0.617 0.310 1.011 106 0.865 0.677 0.240 0.613 0.314 1.024
51 0.846 0.694 0.237 0.616 0.310 1.012 107 0.866 0.677 0.240 0.613 0.314 1.024
52 0.847 0.694 0.237 0.616 0.310 1.011 108 0.866 0.677 0.240 0.613 0.314 1.025
53 0.847 0.693 0.238 0.616 0.310 1.013 109 0.866 0.677 0.240 0.612 0.314 1.026
54 0.848 0.693 0.237 0.616 0.310 1.011 110 0.866 0.676 0.240 0.612 0.314 1.026
55 0.849 0.693 0.237 0.616 0.310 1.011 111 0.866 0.676 0.241 0.612 0.314 1.027
56 0.849 0.692 0.238 0.616 0.310 1.012 112 0.866 0.676 0.241 0.612 0.314 1.027  
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Appendix I: Johnie Boy FOM 
 

Yield MOEx MOEy NAD FMS FOM
REL
FOM Yield MOEx MOEy NAD FMS FOM

REL
FOM

0.1 0.000 NaN 1.000 0.000 NaN 5.1 0.780 0.636 0.299 0.539 0.425 1.017
0.2 0.000 NaN 1.000 0.000 NaN 5.2 0.781 0.634 0.300 0.539 0.426 1.019
0.3 0.238 0.824 0.630 0.227 1.422 3.399 5.3 0.783 0.633 0.300 0.538 0.427 1.020
0.4 0.325 0.812 0.536 0.302 1.044 2.497 5.4 0.783 0.632 0.301 0.538 0.427 1.022
0.5 0.391 0.791 0.477 0.355 0.857 2.048 5.5 0.784 0.630 0.301 0.537 0.428 1.024
0.6 0.452 0.767 0.432 0.397 0.733 1.753 5.6 0.786 0.629 0.301 0.537 0.428 1.024
0.7 0.521 0.731 0.392 0.437 0.635 1.517 5.7 0.787 0.628 0.302 0.536 0.429 1.027
0.8 0.561 0.719 0.370 0.460 0.582 1.391 5.8 0.788 0.627 0.302 0.537 0.429 1.025
0.9 0.584 0.710 0.359 0.472 0.557 1.332 5.9 0.789 0.626 0.302 0.536 0.430 1.028
1 0.607 0.707 0.347 0.485 0.530 1.267 6 0.791 0.625 0.302 0.537 0.429 1.025

1.1 0.622 0.703 0.340 0.492 0.515 1.231 6.1 0.792 0.624 0.302 0.536 0.430 1.028
1.2 0.637 0.701 0.333 0.501 0.498 1.190 6.2 0.793 0.623 0.302 0.536 0.430 1.027
1.3 0.648 0.697 0.328 0.506 0.488 1.167 6.3 0.794 0.622 0.302 0.536 0.430 1.029
1.4 0.658 0.696 0.323 0.511 0.478 1.143 6.4 0.795 0.622 0.302 0.536 0.430 1.029
1.5 0.668 0.694 0.319 0.516 0.469 1.122 6.5 0.795 0.620 0.303 0.535 0.432 1.033
1.6 0.676 0.691 0.317 0.519 0.463 1.107 6.6 0.796 0.620 0.303 0.535 0.432 1.032
1.7 0.683 0.691 0.313 0.523 0.456 1.090 6.7 0.796 0.619 0.304 0.534 0.432 1.034
1.8 0.689 0.689 0.311 0.525 0.452 1.080 6.8 0.797 0.618 0.303 0.534 0.432 1.033
1.9 0.695 0.688 0.308 0.529 0.446 1.066 6.9 0.798 0.618 0.304 0.534 0.433 1.034
2 0.700 0.686 0.307 0.530 0.443 1.059 7 0.799 0.617 0.303 0.534 0.432 1.033

2.1 0.707 0.685 0.304 0.534 0.437 1.045 7.1 0.800 0.617 0.303 0.535 0.431 1.031
2.2 0.711 0.684 0.303 0.535 0.435 1.039 7.2 0.801 0.617 0.303 0.535 0.431 1.030
2.3 0.715 0.682 0.302 0.536 0.433 1.034 7.3 0.802 0.616 0.303 0.535 0.431 1.030
2.4 0.719 0.680 0.301 0.538 0.430 1.027 7.4 0.803 0.616 0.303 0.535 0.430 1.028
2.5 0.723 0.679 0.300 0.539 0.428 1.022 7.5 0.803 0.615 0.303 0.535 0.431 1.030
2.6 0.728 0.677 0.299 0.540 0.426 1.017 7.6 0.805 0.616 0.302 0.536 0.430 1.027
2.7 0.731 0.675 0.298 0.541 0.424 1.015 7.7 0.805 0.615 0.303 0.535 0.431 1.030
2.8 0.733 0.674 0.298 0.541 0.423 1.012 7.8 0.805 0.613 0.304 0.534 0.433 1.035
2.9 0.737 0.672 0.297 0.542 0.422 1.008 7.9 0.805 0.613 0.304 0.534 0.433 1.034
3 0.741 0.671 0.296 0.543 0.419 1.003 8 0.807 0.613 0.304 0.534 0.432 1.033

3.1 0.743 0.669 0.296 0.544 0.419 1.003 8.1 0.807 0.612 0.304 0.534 0.432 1.033
3.2 0.745 0.667 0.296 0.543 0.421 1.006 8.2 0.808 0.612 0.303 0.534 0.431 1.031
3.3 0.747 0.665 0.297 0.542 0.421 1.007 8.3 0.809 0.611 0.304 0.534 0.432 1.032
3.4 0.751 0.663 0.296 0.544 0.419 1.001 8.4 0.810 0.611 0.303 0.535 0.431 1.030
3.5 0.753 0.662 0.295 0.544 0.418 1.000 8.5 0.810 0.611 0.303 0.535 0.431 1.030
3.6 0.754 0.660 0.296 0.543 0.420 1.004 8.6 0.812 0.611 0.303 0.535 0.429 1.027
3.7 0.757 0.658 0.296 0.543 0.420 1.003 8.7 0.812 0.611 0.303 0.535 0.430 1.028
3.8 0.758 0.655 0.297 0.542 0.421 1.007 8.8 0.812 0.611 0.303 0.535 0.430 1.027
3.9 0.762 0.654 0.296 0.543 0.419 1.002 8.9 0.813 0.611 0.302 0.536 0.429 1.026
4 0.763 0.652 0.297 0.542 0.421 1.006 9 0.813 0.610 0.303 0.535 0.430 1.027

4.1 0.765 0.651 0.297 0.542 0.420 1.005 9.1 0.814 0.610 0.303 0.535 0.430 1.028
4.2 0.765 0.648 0.298 0.541 0.423 1.012 9.2 0.814 0.609 0.303 0.535 0.431 1.029
4.3 0.768 0.647 0.298 0.541 0.422 1.009 9.3 0.814 0.609 0.303 0.535 0.431 1.030
4.4 0.770 0.646 0.297 0.541 0.422 1.008 9.4 0.814 0.608 0.303 0.534 0.431 1.030
4.5 0.773 0.645 0.297 0.542 0.421 1.006 9.5 0.815 0.609 0.303 0.535 0.430 1.029
4.6 0.773 0.643 0.298 0.541 0.423 1.011 9.6 0.816 0.608 0.303 0.535 0.430 1.027
4.7 0.774 0.641 0.299 0.540 0.424 1.013 9.7 0.817 0.608 0.303 0.535 0.429 1.027
4.8 0.775 0.639 0.299 0.539 0.425 1.016 9.8 0.817 0.608 0.303 0.535 0.430 1.027
4.9 0.777 0.638 0.299 0.539 0.425 1.016 9.9 0.818 0.608 0.303 0.535 0.429 1.026
5 0.779 0.636 0.300 0.539 0.426 1.018 10 0.819 0.608 0.302 0.536 0.428 1.023
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Appendix J: HPAC Parameters 

All HPAC scenarios were run using HPAC 4.04.11.  Incompatibilities with the 

weather files precluded the use of HPAC 5 SP1 for deposition calculations. HPAC 

4.04.11 was used to create HPAC dose rate contours.  Default parameters were used for 

HPAC except the temporal domain was adjusted to 48 hours from the detonation time, 

the horizontal spatial domain was limited to the weather grid, and the vertical domain 

was limited to the cloud top height. 

The HPAC 4.04.11 projects were exported to HPAC 5 SP1 and H+1hr dose rate 

contours were recreated from HPAC 48-hr dose rates.  H+1hr dose rates were exported 

from HPAC at 1km grid spacing around ground zero for the entire weather grid.  To 

create H+1 dose rate contours, HPAC was run until deposition was complete for the 

temporal and/or spatial domain.  In all cases, the radioactive cloud exited the spatial 

domain prior to 48 hours.  HPAC 4.04.11 was used to create 48-hr dose rate contours.  

The Way-Wigner decay law relationship was used to convert 48-hr dose rate contours to 

H+1hr dose rate contours using (36), where ( , ,1)D x y
•

 is the H+1hr dose rate, ( , , 48)D x y
•

 

is the H+48hr dose rate, and t is 48-hours. 

 1.2( , ,1) ( , , )*D x y D x y t t
• •

=  (36) 

Using a conversion factor of 0.877 rad
roentgen

Equation (36) may be rewritten as (37).   

 ( , ,1) 153.325 ( , , 48)D x y D x y
• •

=  (37) 
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Appendix K: Statistical Analysis 
 

A statistical analysis of the predicted best-fit and Error in FOM yield estimates 

were conducted for the five surface and surface contact bursts.  In all cases, data is 

calculated using relative predicted values.  The DNA-EX recorded yield values are taken 

as the accepted value.  The relative yield is defined by (38). 

 predicted

DASA EX

Y
x

Y −

=  (38) 

For this analysis, since a lower-end bracket for yield is estimated, a more conservative 

approach to defining the relative yield is defined by (39). 

 DASA EX

PREDICTED

Yx
Y

−=  (39) 

The estimated standard deviation, s, for a set of data points is calculated using 

(40), where ix is the relative yield of the ith data point, x is the estimated mean relative 

yield, and N is the number of data points [30:75]. 

 ( )2

1
ix x

s
N

∑ −
=

−
 (40) 

For this analysis, x and N are one and five, respectively.   

The confidence limit, CL, for a data set is calculated using (41), where t is a 

statistical factor depending on the number of degrees of freedom [30:90]. 

 
tsCL x
N

= ±  (41) 

For this analysis, a t-value of 2.132 was used for 90% confidence [30:90].   
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Appendix L: Glossary 
 
4-D Winds—Winds derived from Jones’ high resolution mesoscale reanalysis weather 

data.  The wind components in the x and y directions at eleven different elevation levels 

are retrieved for each point in the weather reanalysis grid at 1-hour increments for more 

than 60 hours.  Vertical winds from the reanalysis weather data are not considered but the 

horizontal wind components vary as the wafers settle.  The wind data undergoes temporal 

changes. 

Area of Interest (AOI)—Area around ground zero for which recreated dose rate 

contours are compared with the historic dose rate contours.  The AOI for all cases, except 

for Johnie Boy, was set to a 200 x 200 mile grid centered over ground zero.  For Johnie 

Boy, the grid was limited to 230km x 230km because the DNA-EX dose rate contour was 

cut off at 115km north of ground zero.   

Balloon Winds—Winds taken from balloon soundings at or near atomic test sites. 

Capped Cloud Tops—Case in which the distribution of activity for each particle size 

group is restricted to below the DNA-EX observed cloud top height.  The cumulative 

distribution for each particle size group below the observed cloud top height is 

normalized to a value of “1”.  The activity for each particle size group is distributed to 

this normalized distribution. 

Error in Figure of Merit (Error in FOM)—Quantification (relative difference) of the 

difference in FOM for a yield to the FOM for the best fit yield. 

Figure of Merit (FOM)—Figure of Merit created to quantitatively describe the 

relationship of Warner and Platt’s MOEx, MOEy, and NAD.  The possible range for 
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FOM values includes all non-negative numbers.  An FOM value of zero represents 

perfect agreement between reference and reproduced dose rate contours. 

Hotline Length—Distance from ground zero to the end of the dose rate contour.  It is 

calculated traveling along the center of a dose rate contour to its end. 

Inversion—Mathematical analysis of the dose rate contours associated with a range of 

yields using the FOM. 

Uncapped Cloud Tops—The distribution of particles for each equal activity particle size 

group is not restricted to below the observed cloud top height.  
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